Pathophysiology of Encephalopathy

  • N. Latronico
  • G. F. Bussi
  • A. Candiani
Conference paper


The metabolic complexity of the central nervous system (CNS) makes it dependent upon the functional integrity of other body systems for the adequate provision of essential nutrients and elimination of toxins. It is therefore not surprising that various metabolic effects on the CNS are secondary to systemic diseases. These are situations in which a diffuse brain malfunction is clinically evident, despite the evidence of structural brain alteration is lacking. It is only when the metabolic disorder has been profound that structural changes occur, thus accounting for the permanent neurological deficits that some patients exhibit.


Hepatic Encephalopathy Excitatory Amino Acid Critical Illness Myopathy Septic Encephalopathy Amino Acid Alteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Young BG, Ropper AH, Bolton CF (eds) (1998) Coma and impaired consciousness. A clinical perspective. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275:470–473PubMedCrossRefGoogle Scholar
  3. 3.
    Bone RC, Balk RA, Cerra FB et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 2:864–890Google Scholar
  4. 4.
    Latronico N, Fenzi F, Recupero D et al (1996) Critical illness myopathy and neuropathy. Lancet 347:1579–1582PubMedCrossRefGoogle Scholar
  5. 5.
    Latronico N (1997) Acute myopathy of intensive care. Ann Neurol 42:131–132PubMedCrossRefGoogle Scholar
  6. 6.
    Vincent JL (1998) Search for effective immunomodulating strategies against sepsis. Lancet 351:922–923PubMedGoogle Scholar
  7. 7.
    Perry VH, Andersson PB, Gordon S (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273PubMedCrossRefGoogle Scholar
  8. 8.
    Young BG, Bolton CF, Archibald YM et al (1992) The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 9:145–152PubMedCrossRefGoogle Scholar
  9. 9.
    Westerlind A, Larsson LE, Haggendal J, Ekstrom-Jodal B (1991) Prevention of endotoxin-induced increase of cerebral oxygen consumption in dogs by propanolol pretreatment. Acta Anaesthesiol Scand 35:745–749PubMedCrossRefGoogle Scholar
  10. 10.
    Bowton DL, Bertels NH, Prough DS et al (1989) Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med 17:399–403PubMedCrossRefGoogle Scholar
  11. 11.
    Maekawa T, Fujii Y, Sadamitsu D et al (1991) Cerebral circulation and metabolism in patients with septic encephalopathy. Am J Emerg Med 9:139–143PubMedCrossRefGoogle Scholar
  12. 12.
    Bolton CF, Young GB, Zochodne DW (1993) The neurological complications of sepsis. Ann Neurol 33:94–100PubMedCrossRefGoogle Scholar
  13. 13.
    Wijdicks EFM, Stevens M (1992) The role of hypotension in septic encephalopathy following surgical procedures. Arch Neurol 49:653–656PubMedCrossRefGoogle Scholar
  14. 14.
    Clawson CC, Hartmann JF, Vernier RL (1966) Electron microscopy of the effect of gramnegative endotoxin on the blood-brain barrier. J Comp Neurol 127:183–198PubMedCrossRefGoogle Scholar
  15. 15.
    Jeppson B, Freund HR, Gimmon Z et al (1981) Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg 141:136–141CrossRefGoogle Scholar
  16. 16.
    du Moulin GC, Paterson D, Hedley-White J, Broitman SA (1985) E. coli peritonitis and bacteremia cause increased blood-brain barrier permeability. Brain Res 340:261–268PubMedCrossRefGoogle Scholar
  17. 17.
    Deng X, Wang X, Andersson R (1995) Endothelial barrier resistance in multiple organs after septic and non septic challenges in the rat. J Appl Physiol 78:2052–2061PubMedGoogle Scholar
  18. 18.
    Papadopoulos MC, Lamb FJ, Moss RF et al (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci 96:461–466PubMedCrossRefGoogle Scholar
  19. 19.
    Latronico N, Zappa S, Antonini S, Candiani A (1995) Osmolalità e sistema nervoso centrale. In: Spandrio L (ed) L’osmolalità. Laboratorio e clinica. Ed Sorbona, Milano, pp 113–128Google Scholar
  20. 20.
    Murphy S (ed) (1993) Astrocytes. Pharmacology and function. Academic Press, San Diego, CAGoogle Scholar
  21. 21.
    Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med 330:613–622PubMedCrossRefGoogle Scholar
  22. 22.
    Lugaro E (1907) Sulle funzioni della neuroglia. Riv Patol Nerv Ment 12:225–233Google Scholar
  23. 23.
    Noremberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53: 213–220CrossRefGoogle Scholar
  24. 24.
    James JH, Jeppson B, Ziparo V, Fisher JE (1979) Hyperammonaemia, plasma amino acid imbalance, and blood-brain amino acid transport: a unified theory of portal-systemic encephalopathy. Lancet 2:772–775PubMedCrossRefGoogle Scholar
  25. 25.
    Hasselgren PO, Fisher JE (1986) Septic encephalopathy. Etiology and management. Intensive Care Med 12:13–16PubMedCrossRefGoogle Scholar
  26. 26.
    Mizock BA, Sabelli HC, Dublin A et al (1990) Septic encephalopathy. Evidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch Int Med 150: 443–449CrossRefGoogle Scholar
  27. 27.
    Sprung CL, Cerra FB, Freund HR et al (1991) Amino acid alterations and encephalopathy in the sepsis syndrome. Crit Care Med 19:753–757PubMedCrossRefGoogle Scholar
  28. 28.
    Freund HR, Muggia-Sullam M, LaFrance R et al (1986) Regional brain amino acid and neurotransmitter derangements during abdominal sepsis in the rat: the effect of amino acids infusions. Arch Surg 121:209–216PubMedCrossRefGoogle Scholar
  29. 29.
    Kadoi Y, Saito S (1996) An alteration in the y-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med 24:298–305PubMedCrossRefGoogle Scholar
  30. 30.
    Soejima Y, Fujii Y, Ishikawa T et al (1990) Local cerebral glucose utilization in septic rats. Crit Care Med 18:423–427PubMedCrossRefGoogle Scholar
  31. 31.
    Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New Engl J Med 332:1351–1362PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • N. Latronico
  • G. F. Bussi
  • A. Candiani

There are no affiliations available

Personalised recommendations