Mechanism of Oxygen Extraction Defect in Septic Shock

  • W. Pajk
  • H. Knotzer
  • W. Hasibeder
Conference paper


Critically ill patients suffering from septic shock most often present in a high output, low peripheral resistance cardiovascular status. In some patients cardiac output may increase to values above 15 lxmin-1 and mixed venous oxygen saturation may exceed normal values demonstrating decreased systemic oxygen extraction. Despite high systemic blood flow, progressive lactic acidosis and irreversible shock develops, suggesting progressive deterioration of oxygen supply to tissues. In these patients the major defect in organ oxygen supply is thought to be located within the microcirculation.


Septic Shock Oxygen Extraction Circ Shock Oxygen Extraction Ratio Microcirculatory Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–1510PubMedCrossRefGoogle Scholar
  2. 2.
    Sair M, Etherington PJ, Curzen NP et al (1996) Tissue oxygenation and pertusion in endotoxemia. Am J Physiol 271:H1620–H1625Google Scholar
  3. 3.
    Garrison RN, Spain DA, Wilson MA et al (1998) Microvascular changes explain the “twohit” theory of multiple organ failure. Ann Surg 227:851–860PubMedCrossRefGoogle Scholar
  4. 4.
    Haisjackl M, Hasibeder W, Klaunzer S et al (1990) Diminished reactive hyperemia in the skin of criticallv ill patients. Crit Care Med 18:813–818PubMedCrossRefGoogle Scholar
  5. 5.
    Nelson DP, Beyer C, Samsel RW et al (1987) Pathological supply dependence of 0>2 uptake during bacteremia in dogs. J Appl Physiol 63:1487–1492PubMedGoogle Scholar
  6. 6.
    Samsel RW, Nelson DP, Sanders WM et al (1988) Effect of endotoxin on systemic and skeletal muscle O2 extraction. J Appl Physiol 65:1377–1382PubMedGoogle Scholar
  7. 7.
    Nelson DP, Samsel RW, Wood LD et al (1988) Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol 64:2410–2419PubMedGoogle Scholar
  8. 8.
    Drazenovic R, Samsel RW, Wylam ME et al (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72:259–265PubMedCrossRefGoogle Scholar
  9. 9.
    Hasibeder W, Germann R, Wolf HJ et al (1996) The effects of short-term endotoxemia and dopamine on mucosal oxygenation in the porcine jejunum. Am J Physiol 270:G667–G675Google Scholar
  10. 10.
    Archie JP (1977) Anatomic arterial-venous shunting in endotoxic and septic shock in dogs. Ann Surgg 186:171–176CrossRefGoogle Scholar
  11. 11.
    Unger LS, Cryer HM, Garrison RN (1989) Differential response of the microvasculature in the liver during bacteremia. Circ Shock 29:335–344PubMedGoogle Scholar
  12. 12.
    Whitworth PW, Cryer HM, Garrison RN et al (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27:111–122PubMedGoogle Scholar
  13. 13.
    Schmidt H, Secchi A, Wellmann R et al (1996) Effect of endotoxemia on intestinal villus microcirculation in rats. J Surg Res 61:521–526PubMedCrossRefGoogle Scholar
  14. 14.
    Rai DK, Gupta LP, Singh RH et al (1974) A study of microcirculation in endotoxin shock. Surg Gynecol Obstet 139:11–16.PubMedGoogle Scholar
  15. 15.
    Tepperman BL, Brown JF, Whittle BJ (1993) Nitric oxide synthetase induction and intestinal epithelial cell viability in rats. Am J Physiol 265:G214–G218Google Scholar
  16. 16.
    Baudry N, Rasetti C, Vicaut E (1996) Differences between cytokine effects in the microcirculation of the rat. Am J Physiol 271:H1186–H1192Google Scholar
  17. 17.
    Schutzer KM, Larsson A, Risberg B (1993) Lung protein leakage in feline septic shock. Am Rev Respir Dis 147:1380–1385PubMedGoogle Scholar
  18. 18.
    Gotloib L, Shostak A, Galdi P et al (1992) Loss of microvascular negative charges accompanied by interstitial edema in septic rats’ heart. Circ Shock 36:45–56PubMedGoogle Scholar
  19. 19.
    Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24:1072–1078PubMedCrossRefGoogle Scholar
  20. 20.
    Baker CH, Wilmoth FR, Sutton ET (1986) Reduced RBC versus plasma microvascular flow due to endotoxin. Circ Shock 20:127–139PubMedGoogle Scholar
  21. 21.
    Bellary SS, Anderson KW, Arden WA (1995) Effect of lipopolysaccharide on the physical conformation of the erythrocyte cytoskeletal proteins. Life Sci 56:91–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Betticher DC, Keller H, Maly FE (1993) The effect of endotoxin and tumour necrosis tactor on erythrocyte and leucocyte deformability in vitro. Br J Haematol 83:130–137PubMedCrossRefGoogle Scholar
  23. 23.
    Bienvenu K, Granger DN (1993) Molecular determinants of shear rate-dependent leukocyte adhesion in postcapillary venules. Am J Physiol 264:H1504–H1508.Google Scholar
  24. 24.
    Harris AG, Skalak TC (1993) Effects of leukocyte activation on capillary hemodynamics in skeletal muscle. Am J Physiol 264:H909–H916Google Scholar
  25. 25.
    Mammen EF (1998) The haematological manifestations of sepsis. J Antimicrob Chemother 41:17–24PubMedCrossRefGoogle Scholar
  26. 26.
    Shoemaker WC, Appel PL, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186PubMedCrossRefGoogle Scholar
  27. 27.
    Tuchschmidt J, Fried J, Astiz M et al (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102:216–220PubMedCrossRefGoogle Scholar
  28. 28.
    Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032PubMedCrossRefGoogle Scholar
  29. 29.
    Hayes MA, Timmins AC, Yau EHS et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722PubMedCrossRefGoogle Scholar
  30. 30.
    Germann R, Haisjackl M, Schwarz B et al (1997) Inotropic treatment and intestinal mucosal tissue oxygenation in a model of porcine endotoxemia. Crit Care Med 25:1191–1197PubMedCrossRefGoogle Scholar
  31. 31.
    Silva E, Debacker D, Creteur J et al (1998) Effects of vasoactive drugs on gastric intramucosal pH. Crit Care Med 26:1749–1758PubMedCrossRefGoogle Scholar
  32. 32.
    Fortenberry JD, Huber AR, Owens ML (1997) Inotropes inhibit endothelial cell surface adhesion molecules induced by interleukin-1 beta. Crit Care Med 25:303–308PubMedCrossRefGoogle Scholar
  33. 33.
    Tighe D, Moss R, Haywood G et al (1993) Dopexamine hydrochloride maintains portal blood flow and attenuates hepatic ultrastructural changes in a porcine peritonitis model of multiple system organ failure. Circ Shock 39:199–206PubMedGoogle Scholar
  34. 34.
    Schmidt H, Schmidt W, Muller T et al (1997) Effect of the 21-aminosteroid tirilazad mesylate on leukocyte adhesion and macromolecular leakage during endotoxemia. Surgery 121: 328–334PubMedCrossRefGoogle Scholar
  35. 35.
    Ward A, Clissold SP (1987) Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 34:50–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Dackiw AP, Mcgilvray ID, Woodside M (1996) Prevention of endotoxin-induced mortality by antitissue factor immunization. Arch Surg 131:1273–1278PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • W. Pajk
  • H. Knotzer
  • W. Hasibeder

There are no affiliations available

Personalised recommendations