Biochemical Regulation of the Microcirculation

  • G. P. Novelli
Conference paper


Microcirculation is the collective name for the smallest peripheral section of the circulatory system; it comprehends arterioles, capillaries and venules, each with its own structural and functional characteristics.


Nitric Oxide Nitric Oxide Synthesis Biochemical Regulation Intestinal Microcirculation Endothelium Dependent Hyperpolarization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zweifach BW (1961) Functional behavior of the microcirculation. Thomas, SpringfieldGoogle Scholar
  2. 2.
    Mortillaro NA (1983) The physiology and pharmacology of the microcirculation. Academic Press, New YorkGoogle Scholar
  3. 3.
    Gaehtgen P (1990) Microcirculatory control of tissue oxygenation. In: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin, pp 44–52Google Scholar
  4. 4.
    Zweifach BW, Thomas L (1957) The relationship between the vascular manifestations of shock induced by endotoxin, trauma and hemorrhage. J Exper Med 106:385–401CrossRefGoogle Scholar
  5. 5.
    Thomas L (1954) The physiological disturbances produced by endotoxin. Rev Physiol 16: 467–490CrossRefGoogle Scholar
  6. 6.
    Astiz ME, De Gent ME, Lin R (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23:265–271PubMedCrossRefGoogle Scholar
  7. 7.
    Rogers F, Dunn R, Barrett J et al (1985) Alterations of capillary blood flow during sepsis. Circ Shock 15:105–110PubMedGoogle Scholar
  8. 8.
    Greenberg S, Curro FA, Tanaka PT (1983) Regulation of vascular smooth muscles of the microcirculation. In: Mortillaro NA (ed) The physiology and pharmacology of the microcirculation. Academic Press, New York, pp 39–141Google Scholar
  9. 9.
    Evequoz D, Waeber B, Corder R et al (1987) Markedly reduced blood pressure responsiveness in endotoxemic rats: reversal by neuropeptide Y. Life Sci 41:2573–2580PubMedCrossRefGoogle Scholar
  10. 10.
    Parratt JR (1989) Alterations in vascular reactivity in sepsis and endotoxemia. In: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin, pp 27–40Google Scholar
  11. 11.
    Christmas JW, Lancaster LH, Blackwell TS (1988) Nuclear factor kB: a pivotal role in the systemic inflammatory response syndrome and new target for therapy. Int Care Med 24:1131–1138CrossRefGoogle Scholar
  12. 12.
    Essani NA, Fisher MA, Jaeschke H (1997) Inhibition of NF-kB activation by dimethylsulfoxide correlates with the suppression of TNF-α formation, reduced ICAM gene transcription and protection against endotoxin-induced liver injury. Shock 7:90–96PubMedCrossRefGoogle Scholar
  13. 13.
    Shu FL, Xiaobing YE, Malik AB (1999) Pirrolidine dithiocarbamate prevents I-kB degradation and reduces microvascular injury induced by lipopolysaccharide in multiple organs. Molec Pharmacol 55:658–677Google Scholar
  14. 14.
    Schmid W, Stenzel K, Gebhard MM et al (1999) C 1-esterase inhibitor and its effects on endotoxin induced leukocyte adherence and plasma extravasation in postcapillary veins. Surgery 125:280–287CrossRefGoogle Scholar
  15. 15.
    Suzuki YI, Packer RL (1993) Inhibition of NF-kB activation by vitamin E derivatives. Biochem Biophys Res Commun 193:277–283CrossRefGoogle Scholar
  16. 16.
    Scannell G (1996) Leukocyte responses to hypoxic/ischemic conditions. New Horiz 4: 179–183PubMedGoogle Scholar
  17. 17.
    Minghini A, Britt LD, Hill MA (1998) Interleukin 1 and interleukin 6 mediate muscle arterial vasodilation: “in vitro” versus ”in vivo“ studies. Shock 9:210–215PubMedCrossRefGoogle Scholar
  18. 18.
    Lou J, Donati YAR, Juillard P et al (1997) Platelets play an important role in TNF-induced microvascular endothelial cell pathology. Am J Pathol 151:1397–1405PubMedGoogle Scholar
  19. 19.
    Maekawa K, Futami S, Nishida M et al (1998) Effects of trauma and sepsis on soluble L-selectin and cell surface expression of L-selectin and CD 116. J Trauma 44:460–467PubMedCrossRefGoogle Scholar
  20. 20.
    Kubes P, Suzuki K, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655PubMedCrossRefGoogle Scholar
  21. 21.
    Kurose T, Anderson DC, Miyasaka M et al (1994) Molecular determinants of reperfusion induced leukocyte adhesion and vascular protein leakage. Circ Res 74:336–343PubMedCrossRefGoogle Scholar
  22. 22.
    Kurose I, Kubes S, Wolf R et al (1993) Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage. Circ Res 73:164–171PubMedCrossRefGoogle Scholar
  23. 23.
    Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255:H 1269-H 1275Google Scholar
  24. 24.
    Cohen RA, Vanhoutte PM (1995) Endothelium dependent hyperpolarization. Beyond nitric oxide and cGMP. Circulation 92:3337–3349PubMedCrossRefGoogle Scholar
  25. 25.
    Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology and pathophysiology. Pharmacol Rev 46:325–415PubMedGoogle Scholar
  26. 26.
    Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:20022012Google Scholar
  27. 27.
    Radomski MW, Palmer RMJ, Moncada S (1987) Endogenous NO inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057–1058PubMedCrossRefGoogle Scholar
  28. 28.
    Radomski MW, Palmer RMJ, Moncada S (1990) Characterization of the L-arginine-nitric oxide pathway in human platelet. Brit J Pharmacol 101:325–328CrossRefGoogle Scholar
  29. 29.
    Clancy RM, Leszczynska-Piziak L, Abramson SH (1992) Nitric oxide, an endothelial cell relaxing factor, inhibits neutrophil superoxide anion production a direct action on the NADPH oxidase. J Clin Invest 90:1116–1121PubMedCrossRefGoogle Scholar
  30. 30.
    Suzuki M, Asako H, Kubes P et al (1991) Neutrophil-derived oxidants promote leukocyte adherence in post-capillary venules. Microvasc Res 42:125–138PubMedCrossRefGoogle Scholar
  31. 31.
    Mitchell DJ, Jingcheng YU, Kabel T (1998) Local L-NAME decreases blood flow and increases leukocyte adhesion via CD18. Am J Physiol 274:H 1264-H 1268Google Scholar
  32. 32.
    Baldwin AL, Thurston G, Al Naemi H (1998) Inhibition of nitric oxide synthesis increases venular permeability and alters endothelial actyn cytoskeleton. Am J Physiol 274:H1776H 1798Google Scholar
  33. 33.
    Kirkeboen KA, Strand OA (1999) The role of nitric oxide in sepsis: an overview. Acta Anaesth Scand 43:275–288PubMedCrossRefGoogle Scholar
  34. 34.
    Spain DA, Wilson MA, Bar-Natan MF et al (1994) Role of nitric oxide in the small intestinal microcirculation during bacteremia. Shock 2:41–46PubMedCrossRefGoogle Scholar
  35. 35.
    Niu X, Smith W, Kubes P (1994) Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res 74:1133–1140PubMedCrossRefGoogle Scholar
  36. 36.
    Arndt H, Russell JB, Kurose I et al (1993) Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis. Gastroenterology 105:675–680PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • G. P. Novelli

There are no affiliations available

Personalised recommendations