Skip to main content

Sepsis and Organ Dysfunction. The Challenge Continues

  • Conference paper
  • 115 Accesses

Abstract

The simultaneous poor functioning of more than one organ or system is an extremely common occurrence in patients admitted to intensive care units, and indeed is one of the main causes of death of such patients. This condition, originally indicated by the acronym MOFS (Multi Organ Failure Syndrome), has recently been renamed as MODS (Multi Organ Dysfunction Syndrome) [1]. This change of nomenclature was principally due to a) the need to express the concept of evolution, contained in the term dysfunction, which reflects the spectrum of intermediate situations existing between full function and full-blown failure and b) the lack of uniformity over a definition of organ failure, which according to the author ranges from a variation in a given parameter to the need for supportive therapy [1]. Nevertheless, beyond the semantic differences, in the light of the most recent animal and clinical studies it appears clear that a) in the vast majority of cases the changes which cause an organ to dysfunction can also cause its failure and that, b) once established the dysfunction can progress towards failure even after the removal of its cause. Thus, in the last analysis, MODS seems to be the final common pathway of a heterogeneous series of clinical events, including shock, mechanical or heat trauma, infection, sepsis, acute pancreatitis and rupture of an aortic aneurysm. In other words, independently of the cause, MODS is generally preceded by a situation associated with a period of cardiovascular instability and/or release of mediators (q. v.)[2] .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Members of the American College of Chest Physician/Society of Critical Care Medicine Consensus Committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–890

    Article  Google Scholar 

  2. Bernard GR (1995) Sepsis trials. Am J Resp Crit Care Med 102:4–10

    Google Scholar 

  3. Kumar A, Short J, Parrillo JE (1999) Genetic factors in septic shock. JAMA 292:579–581

    Article  Google Scholar 

  4. Knaus WA, Draper EA, Wagner DPO, Zimmermann JE (1985) Prognosis in acute organ system failure. Ann Surg 202:685–693

    Article  PubMed  CAS  Google Scholar 

  5. Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time? Crit Care Med 26:2078–2086

    Article  PubMed  CAS  Google Scholar 

  6. Jardin F, Fellahi JL, Beauchet A et al (1999) Improved prognosis of acute respiratory distress syndrome 15 years on. Intensive Care Med 25:936–941

    Article  PubMed  CAS  Google Scholar 

  7. Lewandowsky K (1999) Epidemiological data challenge ARDS/ALI definition. Intensive Care Med 25:884–886

    Article  Google Scholar 

  8. Steltzer H, Krafft P (1999) Improved outcome of ARDS patients. Are we really performing better? Intensive Care Med 25:887–889

    Article  PubMed  CAS  Google Scholar 

  9. Stewart TE, Meade OM, Cook DJ, Granton JT et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med 338:355–361

    Article  PubMed  CAS  Google Scholar 

  10. Brochard L and the Multicenter Trial Group on tidal volume reduction in ARDS (1998) Tidal volume reduction for the prevention of ventilator-induced lung injury in ARDS. Am Rev Respir Crit Care Med 158:1831–1838

    Google Scholar 

  11. Amato M, Barbas CSV, Medeiros DM et al (1998) Effects of a protective ventilatory strategy on mortality in ARDS. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  12. Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. A randomized controlled study. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  13. Davies MG, Hagen PO (1997) Systemic inflammatory response syndrome. Br J Surg 84: 920–935

    Article  PubMed  CAS  Google Scholar 

  14. Moldawer LL (1994) Biology of proinflammatory cytokines and their antagonist. Crit Care Med 22:S3-S7

    PubMed  CAS  Google Scholar 

  15. Michie HR, Manogue KR, Springs DR et al (1988) Detection of circulating tumour necrosis factor after endotoxin administration. N Engl J Med 318;23:1481–1486

    Article  PubMed  CAS  Google Scholar 

  16. Pinsky MR, Vincent JL, Deviere J et al (1993) Serum cytokine levels in human septic shock: relation to multiple system organ failure and mortality. Chest 103:565–55

    Article  PubMed  CAS  Google Scholar 

  17. Calandra T, Baumgartner JD, Grau GE et al (1990) Prognostic values of tumour necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon gamma in the serum of patients with septic shock. J Infect Dis 161:982–987

    Article  PubMed  CAS  Google Scholar 

  18. Millar AB, Singer M, C Meager et al (1989) Tumour necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet 23:712–714

    Article  Google Scholar 

  19. Berlot G, Vincent JL (1992) Cardiovascular effects of cytokines. Clin Intens Care 3:199–205

    Google Scholar 

  20. Saladino R, Erikson M, Levy N et al (1992) Utility of serum interleukin-6 for diagnosis of invasive bacterial disease in children. Ann Emerg Med 21:1413–1417

    Article  PubMed  CAS  Google Scholar 

  21. Fassbender K, Pargger K, Muller W, Zimmerli W (1993) Interleukin-6 and acute phase protein concentrations in surgical intensive care patients: diagnostic signs in nosocomial infections. Crit Care Med 21:1175–1180

    Article  PubMed  CAS  Google Scholar 

  22. Calandra T, Gerain J, Heumann D et al (1991) High circulating levels of interleukin 6 in patients with septic shock: evolution during sepsis, prognostic value and interplay with other cytokines. Am J Med 91:23–29

    Article  PubMed  CAS  Google Scholar 

  23. Lefer A (1989) Significance of lipid mediators in shock states. Circ Shock 27:3–12

    PubMed  CAS  Google Scholar 

  24. Cavaillon JM, Munoz C, Fitting C et al (1992) Circulating cytokines: the tip of the iceberg? Circ Shock 38:145–152

    PubMed  CAS  Google Scholar 

  25. Damas P, Canivet JL, De Groote D et al (1997) Sepsis and serum cytokine concentrations. Crit Care Med 25:405–412

    Article  PubMed  CAS  Google Scholar 

  26. Bone RC (1996) Sir Isaac Newton, Sepsis, SIRS and CARS. Crit Care Med 24:1125–1136

    Article  PubMed  CAS  Google Scholar 

  27. Cain BS, Meldrun DR, Harken AH, Mcintyre RC (1998) The physiologic basis for anticytokine clinical trials in the treatment of sepsis. J Am Coll Surgeons 186:337–350

    Article  CAS  Google Scholar 

  28. Vincent JL, Bakker J, Marecaux G et al (1992) Administration of anti TNF antibodies improves left ventricular function in septic shock patients: results of a pilot study. Chest 101: 810–815

    Article  PubMed  CAS  Google Scholar 

  29. Gomez A, Wang R, Unruh H et al (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73:671–785

    Article  PubMed  CAS  Google Scholar 

  30. Mccord JM (1985) Oxygen derived free radicals in post-ischemic tissue injury. N Engl J Med 312:159–163

    Article  PubMed  CAS  Google Scholar 

  31. Cotran RS (1990) Cytokine and endothelial cell biology. Physiol Rev 70:427–451

    PubMed  Google Scholar 

  32. Bakker J, Vincent JL (1991) The oxygen supply dependency phenomenon is associated with increased blood lactate levels. J Crit Care 6:152–159

    Article  Google Scholar 

  33. Shoemaker WC, Appel PL, Kram HB (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high risk surgical patients. Chest 94:1176–1182

    Article  PubMed  CAS  Google Scholar 

  34. Moore FA, Haenel JB, Moore EE, Whitehill TA (1992) Incommensurate oxygen consumption in response to maximal oxygen availability predicts postinjury multiple organ failure. J Trauma 33:58–65

    Article  PubMed  CAS  Google Scholar 

  35. Fleming A, Bishop M, Appel P et al (1992) Prospective trial of supranormal values as goals of resuscitation in severe trauma. Arch Surg 127:1175–1181

    Article  PubMed  CAS  Google Scholar 

  36. Tuchshmidt J, Fried J, Astiz M, Rackow E (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102:216–220

    Article  Google Scholar 

  37. Bartlett RH, Dechert RE (1990) Oxygen kinetics: pitfalls in clinical research. J Crit Care 5:77–80

    Article  Google Scholar 

  38. Ronco JJ, Fenwick JC, Wiggs BR et al (1993) Oxygen consumption is independent of increases in oxygen delivery by dobutamine in septic patients who have normal or increased plasma lactate. Am Rev Resp Dis 147:25–31

    Article  PubMed  CAS  Google Scholar 

  39. Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

  40. Hayes MA, Timmins AC, Yau EHS et al (1994) Elevations of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  PubMed  CAS  Google Scholar 

  41. Fink MP (1991) Gastrointestinal mucosal injury in experimental models of shock, trauma and sepsis. Crit Care Med 19:627–641

    Article  PubMed  CAS  Google Scholar 

  42. Jacobson LF, Noer RF (1952) The vascular pattern of the intestinal villi in various laboratory animals and in man. Anat Rev 114:85–90

    Article  CAS  Google Scholar 

  43. Jodal M, Lundgren M (1970) Plasma skimming in the intestinal tract. Acta Physiol Scand 80:50–55

    Article  PubMed  CAS  Google Scholar 

  44. Porter JM, Sussman MS, Bulkley GB (1989) Splanchnic vasoconstriction in circulatory shock. In: Marston A, Bulkley GB, Fiddian-Green RG et al (eds) Splanchnic ischemia and multi-organ failure. Arnold, London, pp 73–88

    Google Scholar 

  45. Adar R, Frankin A, Spark RF et al (1976) Effect of dehydration and cardiac tamponade on SMA flow: role of vasoactive substances. Surgery 79:534–538

    PubMed  CAS  Google Scholar 

  46. Jones WG II, Minei JP, Barber AE et al (1990) Bacterial translocation and intestinal atrophy after thermal injury and burn wound sepsis. Ann Surg 211:399–403

    Article  PubMed  Google Scholar 

  47. Lang CH, Bagby GJ, Ferguson JL et al (1984) Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am J Physiol 246: R331–334

    Google Scholar 

  48. Nxumalo JL, Teranaka M, Shenk WG (1978) Hepatic blood flow measurement III. Hepatic blood flow measured by ICG clearance and electromagnetic flow meters in a canine septic shock model. Ann Surg 187:299–304

    Article  PubMed  CAS  Google Scholar 

  49. Whithwoth PW, Cryer HM, Garrison RN et al (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27 :111–115

    Google Scholar 

  50. Aulick LH, Goodwin CW, Becker RA et al (1981) Visceral blood flow following injury. Ann Surg 193:112–116

    Article  PubMed  CAS  Google Scholar 

  51. Dahn MS, Lange P, Lobdel K et al (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 100:69–74

    Google Scholar 

  52. Nelson DP, Samsel RW, Wood LDH et al (1988) Pathological supply dependence of systemic and intestinal oxygen uptake during endotoxemia. J Appl Physiol 64:2410–2418

    PubMed  CAS  Google Scholar 

  53. Ruokonen E, Takala J, Kari A et al (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1296–1303

    Article  PubMed  CAS  Google Scholar 

  54. Ruokonen E, Takala J, Kari A (1993) Regional blood flow and oxygen transport in patients with the low cardiac output syndrome after cardiac surgery. Crit Care Med 21:1304–1311

    Article  PubMed  CAS  Google Scholar 

  55. Hsueh W, Gonzalez-Crussi F, Arroyave JL et al (1986) Platelet activating factor induced ischemic bowel necrosis. The role of platelet activating factor antagonists. Am J Pharmacol 123:79–85

    CAS  Google Scholar 

  56. Gonzalez-Crussi F, Hsueh W(1983) Experimental models of ischemic bowel necrosis. The role of platelet activating factor and endotoxin. Am J Pathol 112:127–132

    PubMed  CAS  Google Scholar 

  57. Madara JL, Stafford J (1989) Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 83:724–728

    Article  PubMed  CAS  Google Scholar 

  58. Rackow EC, Astiz ME (1991) Pathophysiology and treatment of septic shock. JAMA 266:548–554

    Article  PubMed  CAS  Google Scholar 

  59. Marecaux G, Pinsky MR, Dupont E et al (1996) Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Med 22: 404–408

    Article  PubMed  CAS  Google Scholar 

  60. Gutierrez G, Wulf ME (1996) Lactic acidosis in sepsis: a commentary. Intensive Care Med 22:6–16

    Article  PubMed  CAS  Google Scholar 

  61. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–1510

    Article  PubMed  CAS  Google Scholar 

  62. James Howard J, Mccarter FD, Fischer JF (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508

    Article  Google Scholar 

  63. Fiddian-Green RG (1989) Studies in splanchnic ischemia and multiple organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG et al (eds) Splanchnic ischemia and multi-organ failure. Arnold, London, pp 349–363

    Google Scholar 

  64. Doglio GR, Pusajo JF, Egurrola MA et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients.Crit Care Med 19:1037–1040

    Article  PubMed  CAS  Google Scholar 

  65. Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  66. Greenway CV, Stark RD (1971) Hepatic vascular bed. Physiol Rev 51:23–28

    PubMed  CAS  Google Scholar 

  67. Friedman G, Berlot G, Kahn RJ, Vincent JL (1994) Combination of blood lactate levels and pHi in severe sepsis. Crit Care Med 22;1:112

    Google Scholar 

  68. Silva E, Debacker D, Creteur J, Vincent JL (1998) Effects of vasoactive drugs on gastric intramucosal pH. Crit Care Med 26:1749–1758

    Article  PubMed  CAS  Google Scholar 

  69. Christman JW, Holden EP, Blackwell TS (1995) Strategies for blocking the systemic effects of cytokines in the sepsis syndrome. Crit Care Med 23:955–963

    Article  PubMed  CAS  Google Scholar 

  70. Ziegler EJ, Mccuchan JA, Fierer J et al (1982) Treatment of gram-bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307:1225–1230

    Article  PubMed  CAS  Google Scholar 

  71. Lachman E, Pitsoe SB, Gaffin SL (1984) Antilipolysaccharide immunotherapy in the management of septic shock of obstetric and gynaecological origin. Lancet 1:981–983

    Article  PubMed  CAS  Google Scholar 

  72. Fomsgaard A, Baek L, Fomsgaard JS et al (1988) Preliminary study in treatment of septic shock patients with antilipopolysaccharide IgG from blood donors. Scand J Infect Dis 21: 697–708

    Article  Google Scholar 

  73. Talan DA (1993) Recent developments in our understanding of sepsis: evaluation of antiendotoxin antibodies and biological response modifiers. Ann Emer Med 22:1871–1990

    Article  CAS  Google Scholar 

  74. Greenman RL, Schein RMH, Martin MA et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of Gram-sepsis. JAMA 266: 1097–1102

    Article  PubMed  CAS  Google Scholar 

  75. Ziegler EJ, Mccutchan JA, Fierer J et al (1991) Treatment of Gram-bacteremia and septic shock with HA-1 A human monoclonal antibody against endotoxin. A randomized, double blind, placebo controlled trial. N Engl J Med 324:429–436

    Article  PubMed  CAS  Google Scholar 

  76. Bone RC, Balk RA, Fein AM et al (1995) A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomized, controlled study. Crit Care Med 1995; 23:994–1006

    Article  Google Scholar 

  77. Cunnion RE (1992) Clinical trials of immunotherapy for sepsis. Crit Care Med 20:721–723

    Article  PubMed  CAS  Google Scholar 

  78. Silva AT, Bayston KF, Cohen J (1990) Prophylactic and therapeutic effects of a monoclonal antibody to tumour necrosis factor-alfa in experimental Gram-shock. J Inf Dis 162:421–427

    Article  CAS  Google Scholar 

  79. Exley AR, Cohen J, Buurman WA et al (1990) Monoclonal antibody to TNF in severe septic shock. Lancet 335:1275–1277

    Article  PubMed  CAS  Google Scholar 

  80. Vincent JL, Bakker J, Marecaux G et al (1992) Administration of anti TNF antibodies improves left ventricular function in septic shock patients: results of a pilot study. Chest 101:810–815

    Article  PubMed  CAS  Google Scholar 

  81. Dhainaut JFA, Vincent JL, Richard C et al (1995) DP 571, a humanized antibody to tumor necrosis factor-alpha: safety, pharmacokinetics, immune response, and influence of the antibody on cytokine concentrations in patients with septic shock. Crit Care Med 23:1461–1469

    Article  PubMed  CAS  Google Scholar 

  82. Cohen J, Carlet J for the INTERSEPT group (1996) INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis. Crit Care Med 24:1431–1440

    Article  PubMed  CAS  Google Scholar 

  83. Rheinhart K, Wiegand-Lohnert C, Grimminger F et al (1996) Assessment of the safety and efficacy of the monoclonal anti-tumour necrosis factor antibody fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose ranging study. Crit Care Med 24:733–742

    Article  Google Scholar 

  84. Arend WP (1991) Interleukin 1 receptor antagonist: a new member of interleukin 1 family. J Clin Invest 88:1445–1451

    Article  PubMed  CAS  Google Scholar 

  85. Granowitz EV, Santos AA, Poutsaka DD et al (1991) Production of interleukin-1 receptor antagonist during experimental endotoxemia. Lancet 1338:1423–1424

    Article  Google Scholar 

  86. Fisher CJ, Slotman GJ, Opal SM et al (1994) Initial evaluation of human recombinant interleukin 1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open label, placebo-controlled multicentre trial. Crit Care Med 22:12–21

    PubMed  Google Scholar 

  87. Fisher CJ, Dhainaut JF, Opal SM et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double blind, placebo-controlled trial. JAMA 271:1836–1843

    Article  PubMed  Google Scholar 

  88. Knaus WA, Harrell FE, Lebreque JF et al (1996) Use of predicted risk of mortality to evaluate the efficacy of anticytokine therapy in sepsis. Crit Care Med 24:46–56

    Article  PubMed  CAS  Google Scholar 

  89. Opal SM, Fisher CJ, Dhainaut JFA et al (1997) Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double blind, placebo-controlled, multicenter trial. Crit Care Med 25:1115–1124

    Article  PubMed  CAS  Google Scholar 

  90. Bazzoni F, Beutler B (1996) Seminars in Medicine at the Beth Israel Hospital, Boston: the tumour necrosis factor ligand and receptor families. N Engl J Med 34:1717–1725

    Google Scholar 

  91. Sorkine P, Setton A, Halpern P et al (1995) Soluble tumour necrosis factor receptors reduce bowel ischemia-induced lung permeability and neutrophil sequestration. Crit Care Med 23:1377–1381

    Article  PubMed  CAS  Google Scholar 

  92. Van Zee KJ, Kohno T, Fisher E et al (1992) Tumour necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumour necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 89:4845–4849

    Article  PubMed  Google Scholar 

  93. Mohler KM, Torrance DS, Smith CA et al (1993) Soluble tumour necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 151:1548–1561

    PubMed  CAS  Google Scholar 

  94. Fisher CJ, Agosti JA, Opal SM et al (1996) Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. N Engl J Med 334:1697–1702

    Article  PubMed  CAS  Google Scholar 

  95. Abraham E, Glauser MP, Butler T et al (1997) p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. JAMA 277:1531–1538

    Article  PubMed  CAS  Google Scholar 

  96. Goldie AS, Fearon KC, Ross JA et al (1995) Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. JAMA 274:172–177

    Article  PubMed  CAS  Google Scholar 

  97. Bone RC (1992) Phospholipids and their inhibitors: a critical evaluation of their role in the treatment of sepsis. Crit Care Med 20:884–890

    Article  PubMed  CAS  Google Scholar 

  98. Sun X, Hsueh W (1992) Bowel necrosis induced by tumour necrosis factor in rats is mediated by platelet activating factor. J Clin Invest 81:1328–1331

    Article  Google Scholar 

  99. Dhainaut JFA, Tenaillon A, Le Tulzo Y et al (1994) Platelet-activating factor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22:1720–1728

    PubMed  CAS  Google Scholar 

  100. Dhainaut JFA, Tenaillon A, Hemmer M et al (1998) Confirmatory platelet-activating factor receptor antagonist trial in patients with severe Gram-negative bacterial sepsis: A phase III, randomized double-blind, placebo-controlled, multicenter trial. Crit Care Med 26:1963–1971

    Article  PubMed  CAS  Google Scholar 

  101. Bollaert PE, Charpentier C, Levy B et al (1998) Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 26:645–650

    Article  PubMed  CAS  Google Scholar 

  102. Ronco C, Bellomo R (1999) Continuous renal replacement therapy in the intensive care unit. Intensive Care Med 781–789

    Google Scholar 

  103. De Vriese AS, Vanholder RC, Pascual M et al (1999) Can inflammatory cytokines be removed efficiently by continuous renal replacement therapies? Intensive Care Med 25: 903–910

    Article  PubMed  Google Scholar 

  104. Barzilay E, Kessler D, Berlot G et al (1989) The use of extracorporeal supportive techniques as additional treatment for sepsis-induced MOF patients. Crit Care Med 17:634–637

    Article  PubMed  CAS  Google Scholar 

  105. Berlot G, Gullo A, Fasiolo S et al (1997) Hemodynamic effects of plasma exchange in septic patients: preliminary report. Blood Purification 15:45–53

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Berlot, G., Lucangelo, U., Gullo, A. (2000). Sepsis and Organ Dysfunction. The Challenge Continues. In: Baue, A.E., Berlot, G., Gullo, A., Vincent, JL. (eds) Sepsis and Organ Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-2284-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2284-3_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0096-4

  • Online ISBN: 978-88-470-2284-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics