Advertisement

Sepsis and Organ Dysfunction. The Challenge Continues

  • G. Berlot
  • U. Lucangelo
  • A. Gullo
Conference paper

Abstract

The simultaneous poor functioning of more than one organ or system is an extremely common occurrence in patients admitted to intensive care units, and indeed is one of the main causes of death of such patients. This condition, originally indicated by the acronym MOFS (Multi Organ Failure Syndrome), has recently been renamed as MODS (Multi Organ Dysfunction Syndrome) [1]. This change of nomenclature was principally due to a) the need to express the concept of evolution, contained in the term dysfunction, which reflects the spectrum of intermediate situations existing between full function and full-blown failure and b) the lack of uniformity over a definition of organ failure, which according to the author ranges from a variation in a given parameter to the need for supportive therapy [1]. Nevertheless, beyond the semantic differences, in the light of the most recent animal and clinical studies it appears clear that a) in the vast majority of cases the changes which cause an organ to dysfunction can also cause its failure and that, b) once established the dysfunction can progress towards failure even after the removal of its cause. Thus, in the last analysis, MODS seems to be the final common pathway of a heterogeneous series of clinical events, including shock, mechanical or heat trauma, infection, sepsis, acute pancreatitis and rupture of an aortic aneurysm. In other words, independently of the cause, MODS is generally preceded by a situation associated with a period of cardiovascular instability and/or release of mediators (q. v.)[2] .

Keywords

Septic Shock Organ Dysfunction Continuous Renal Replacement Therapy Adult Respiratory Distress Syndrome Septic Shock Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Members of the American College of Chest Physician/Society of Critical Care Medicine Consensus Committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–890CrossRefGoogle Scholar
  2. 2.
    Bernard GR (1995) Sepsis trials. Am J Resp Crit Care Med 102:4–10Google Scholar
  3. 3.
    Kumar A, Short J, Parrillo JE (1999) Genetic factors in septic shock. JAMA 292:579–581CrossRefGoogle Scholar
  4. 4.
    Knaus WA, Draper EA, Wagner DPO, Zimmermann JE (1985) Prognosis in acute organ system failure. Ann Surg 202:685–693PubMedCrossRefGoogle Scholar
  5. 5.
    Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time? Crit Care Med 26:2078–2086PubMedCrossRefGoogle Scholar
  6. 6.
    Jardin F, Fellahi JL, Beauchet A et al (1999) Improved prognosis of acute respiratory distress syndrome 15 years on. Intensive Care Med 25:936–941PubMedCrossRefGoogle Scholar
  7. 7.
    Lewandowsky K (1999) Epidemiological data challenge ARDS/ALI definition. Intensive Care Med 25:884–886CrossRefGoogle Scholar
  8. 8.
    Steltzer H, Krafft P (1999) Improved outcome of ARDS patients. Are we really performing better? Intensive Care Med 25:887–889PubMedCrossRefGoogle Scholar
  9. 9.
    Stewart TE, Meade OM, Cook DJ, Granton JT et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med 338:355–361PubMedCrossRefGoogle Scholar
  10. 10.
    Brochard L and the Multicenter Trial Group on tidal volume reduction in ARDS (1998) Tidal volume reduction for the prevention of ventilator-induced lung injury in ARDS. Am Rev Respir Crit Care Med 158:1831–1838Google Scholar
  11. 11.
    Amato M, Barbas CSV, Medeiros DM et al (1998) Effects of a protective ventilatory strategy on mortality in ARDS. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  12. 12.
    Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. A randomized controlled study. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  13. 13.
    Davies MG, Hagen PO (1997) Systemic inflammatory response syndrome. Br J Surg 84: 920–935PubMedCrossRefGoogle Scholar
  14. 14.
    Moldawer LL (1994) Biology of proinflammatory cytokines and their antagonist. Crit Care Med 22:S3-S7PubMedGoogle Scholar
  15. 15.
    Michie HR, Manogue KR, Springs DR et al (1988) Detection of circulating tumour necrosis factor after endotoxin administration. N Engl J Med 318;23:1481–1486PubMedCrossRefGoogle Scholar
  16. 16.
    Pinsky MR, Vincent JL, Deviere J et al (1993) Serum cytokine levels in human septic shock: relation to multiple system organ failure and mortality. Chest 103:565–55PubMedCrossRefGoogle Scholar
  17. 17.
    Calandra T, Baumgartner JD, Grau GE et al (1990) Prognostic values of tumour necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon gamma in the serum of patients with septic shock. J Infect Dis 161:982–987PubMedCrossRefGoogle Scholar
  18. 18.
    Millar AB, Singer M, C Meager et al (1989) Tumour necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet 23:712–714CrossRefGoogle Scholar
  19. 19.
    Berlot G, Vincent JL (1992) Cardiovascular effects of cytokines. Clin Intens Care 3:199–205Google Scholar
  20. 20.
    Saladino R, Erikson M, Levy N et al (1992) Utility of serum interleukin-6 for diagnosis of invasive bacterial disease in children. Ann Emerg Med 21:1413–1417PubMedCrossRefGoogle Scholar
  21. 21.
    Fassbender K, Pargger K, Muller W, Zimmerli W (1993) Interleukin-6 and acute phase protein concentrations in surgical intensive care patients: diagnostic signs in nosocomial infections. Crit Care Med 21:1175–1180PubMedCrossRefGoogle Scholar
  22. 22.
    Calandra T, Gerain J, Heumann D et al (1991) High circulating levels of interleukin 6 in patients with septic shock: evolution during sepsis, prognostic value and interplay with other cytokines. Am J Med 91:23–29PubMedCrossRefGoogle Scholar
  23. 23.
    Lefer A (1989) Significance of lipid mediators in shock states. Circ Shock 27:3–12PubMedGoogle Scholar
  24. 24.
    Cavaillon JM, Munoz C, Fitting C et al (1992) Circulating cytokines: the tip of the iceberg? Circ Shock 38:145–152PubMedGoogle Scholar
  25. 25.
    Damas P, Canivet JL, De Groote D et al (1997) Sepsis and serum cytokine concentrations. Crit Care Med 25:405–412PubMedCrossRefGoogle Scholar
  26. 26.
    Bone RC (1996) Sir Isaac Newton, Sepsis, SIRS and CARS. Crit Care Med 24:1125–1136PubMedCrossRefGoogle Scholar
  27. 27.
    Cain BS, Meldrun DR, Harken AH, Mcintyre RC (1998) The physiologic basis for anticytokine clinical trials in the treatment of sepsis. J Am Coll Surgeons 186:337–350CrossRefGoogle Scholar
  28. 28.
    Vincent JL, Bakker J, Marecaux G et al (1992) Administration of anti TNF antibodies improves left ventricular function in septic shock patients: results of a pilot study. Chest 101: 810–815PubMedCrossRefGoogle Scholar
  29. 29.
    Gomez A, Wang R, Unruh H et al (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73:671–785PubMedCrossRefGoogle Scholar
  30. 30.
    Mccord JM (1985) Oxygen derived free radicals in post-ischemic tissue injury. N Engl J Med 312:159–163PubMedCrossRefGoogle Scholar
  31. 31.
    Cotran RS (1990) Cytokine and endothelial cell biology. Physiol Rev 70:427–451PubMedGoogle Scholar
  32. 32.
    Bakker J, Vincent JL (1991) The oxygen supply dependency phenomenon is associated with increased blood lactate levels. J Crit Care 6:152–159CrossRefGoogle Scholar
  33. 33.
    Shoemaker WC, Appel PL, Kram HB (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high risk surgical patients. Chest 94:1176–1182PubMedCrossRefGoogle Scholar
  34. 34.
    Moore FA, Haenel JB, Moore EE, Whitehill TA (1992) Incommensurate oxygen consumption in response to maximal oxygen availability predicts postinjury multiple organ failure. J Trauma 33:58–65PubMedCrossRefGoogle Scholar
  35. 35.
    Fleming A, Bishop M, Appel P et al (1992) Prospective trial of supranormal values as goals of resuscitation in severe trauma. Arch Surg 127:1175–1181PubMedCrossRefGoogle Scholar
  36. 36.
    Tuchshmidt J, Fried J, Astiz M, Rackow E (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102:216–220CrossRefGoogle Scholar
  37. 37.
    Bartlett RH, Dechert RE (1990) Oxygen kinetics: pitfalls in clinical research. J Crit Care 5:77–80CrossRefGoogle Scholar
  38. 38.
    Ronco JJ, Fenwick JC, Wiggs BR et al (1993) Oxygen consumption is independent of increases in oxygen delivery by dobutamine in septic patients who have normal or increased plasma lactate. Am Rev Resp Dis 147:25–31PubMedCrossRefGoogle Scholar
  39. 39.
    Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032PubMedCrossRefGoogle Scholar
  40. 40.
    Hayes MA, Timmins AC, Yau EHS et al (1994) Elevations of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722PubMedCrossRefGoogle Scholar
  41. 41.
    Fink MP (1991) Gastrointestinal mucosal injury in experimental models of shock, trauma and sepsis. Crit Care Med 19:627–641PubMedCrossRefGoogle Scholar
  42. 42.
    Jacobson LF, Noer RF (1952) The vascular pattern of the intestinal villi in various laboratory animals and in man. Anat Rev 114:85–90CrossRefGoogle Scholar
  43. 43.
    Jodal M, Lundgren M (1970) Plasma skimming in the intestinal tract. Acta Physiol Scand 80:50–55PubMedCrossRefGoogle Scholar
  44. 44.
    Porter JM, Sussman MS, Bulkley GB (1989) Splanchnic vasoconstriction in circulatory shock. In: Marston A, Bulkley GB, Fiddian-Green RG et al (eds) Splanchnic ischemia and multi-organ failure. Arnold, London, pp 73–88Google Scholar
  45. 45.
    Adar R, Frankin A, Spark RF et al (1976) Effect of dehydration and cardiac tamponade on SMA flow: role of vasoactive substances. Surgery 79:534–538PubMedGoogle Scholar
  46. 46.
    Jones WG II, Minei JP, Barber AE et al (1990) Bacterial translocation and intestinal atrophy after thermal injury and burn wound sepsis. Ann Surg 211:399–403PubMedCrossRefGoogle Scholar
  47. 47.
    Lang CH, Bagby GJ, Ferguson JL et al (1984) Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am J Physiol 246: R331–334Google Scholar
  48. 48.
    Nxumalo JL, Teranaka M, Shenk WG (1978) Hepatic blood flow measurement III. Hepatic blood flow measured by ICG clearance and electromagnetic flow meters in a canine septic shock model. Ann Surg 187:299–304PubMedCrossRefGoogle Scholar
  49. 49.
    Whithwoth PW, Cryer HM, Garrison RN et al (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27 :111–115Google Scholar
  50. 50.
    Aulick LH, Goodwin CW, Becker RA et al (1981) Visceral blood flow following injury. Ann Surg 193:112–116PubMedCrossRefGoogle Scholar
  51. 51.
    Dahn MS, Lange P, Lobdel K et al (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 100:69–74Google Scholar
  52. 52.
    Nelson DP, Samsel RW, Wood LDH et al (1988) Pathological supply dependence of systemic and intestinal oxygen uptake during endotoxemia. J Appl Physiol 64:2410–2418PubMedGoogle Scholar
  53. 53.
    Ruokonen E, Takala J, Kari A et al (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1296–1303PubMedCrossRefGoogle Scholar
  54. 54.
    Ruokonen E, Takala J, Kari A (1993) Regional blood flow and oxygen transport in patients with the low cardiac output syndrome after cardiac surgery. Crit Care Med 21:1304–1311PubMedCrossRefGoogle Scholar
  55. 55.
    Hsueh W, Gonzalez-Crussi F, Arroyave JL et al (1986) Platelet activating factor induced ischemic bowel necrosis. The role of platelet activating factor antagonists. Am J Pharmacol 123:79–85Google Scholar
  56. 56.
    Gonzalez-Crussi F, Hsueh W(1983) Experimental models of ischemic bowel necrosis. The role of platelet activating factor and endotoxin. Am J Pathol 112:127–132PubMedGoogle Scholar
  57. 57.
    Madara JL, Stafford J (1989) Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 83:724–728PubMedCrossRefGoogle Scholar
  58. 58.
    Rackow EC, Astiz ME (1991) Pathophysiology and treatment of septic shock. JAMA 266:548–554PubMedCrossRefGoogle Scholar
  59. 59.
    Marecaux G, Pinsky MR, Dupont E et al (1996) Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Med 22: 404–408PubMedCrossRefGoogle Scholar
  60. 60.
    Gutierrez G, Wulf ME (1996) Lactic acidosis in sepsis: a commentary. Intensive Care Med 22:6–16PubMedCrossRefGoogle Scholar
  61. 61.
    Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–1510PubMedCrossRefGoogle Scholar
  62. 62.
    James Howard J, Mccarter FD, Fischer JF (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508CrossRefGoogle Scholar
  63. 63.
    Fiddian-Green RG (1989) Studies in splanchnic ischemia and multiple organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG et al (eds) Splanchnic ischemia and multi-organ failure. Arnold, London, pp 349–363Google Scholar
  64. 64.
    Doglio GR, Pusajo JF, Egurrola MA et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients.Crit Care Med 19:1037–1040PubMedCrossRefGoogle Scholar
  65. 65.
    Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199PubMedCrossRefGoogle Scholar
  66. 66.
    Greenway CV, Stark RD (1971) Hepatic vascular bed. Physiol Rev 51:23–28PubMedGoogle Scholar
  67. 67.
    Friedman G, Berlot G, Kahn RJ, Vincent JL (1994) Combination of blood lactate levels and pHi in severe sepsis. Crit Care Med 22;1:112Google Scholar
  68. 68.
    Silva E, Debacker D, Creteur J, Vincent JL (1998) Effects of vasoactive drugs on gastric intramucosal pH. Crit Care Med 26:1749–1758PubMedCrossRefGoogle Scholar
  69. 69.
    Christman JW, Holden EP, Blackwell TS (1995) Strategies for blocking the systemic effects of cytokines in the sepsis syndrome. Crit Care Med 23:955–963PubMedCrossRefGoogle Scholar
  70. 70.
    Ziegler EJ, Mccuchan JA, Fierer J et al (1982) Treatment of gram-bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307:1225–1230PubMedCrossRefGoogle Scholar
  71. 71.
    Lachman E, Pitsoe SB, Gaffin SL (1984) Antilipolysaccharide immunotherapy in the management of septic shock of obstetric and gynaecological origin. Lancet 1:981–983PubMedCrossRefGoogle Scholar
  72. 72.
    Fomsgaard A, Baek L, Fomsgaard JS et al (1988) Preliminary study in treatment of septic shock patients with antilipopolysaccharide IgG from blood donors. Scand J Infect Dis 21: 697–708CrossRefGoogle Scholar
  73. 73.
    Talan DA (1993) Recent developments in our understanding of sepsis: evaluation of antiendotoxin antibodies and biological response modifiers. Ann Emer Med 22:1871–1990CrossRefGoogle Scholar
  74. 74.
    Greenman RL, Schein RMH, Martin MA et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of Gram-sepsis. JAMA 266: 1097–1102PubMedCrossRefGoogle Scholar
  75. 75.
    Ziegler EJ, Mccutchan JA, Fierer J et al (1991) Treatment of Gram-bacteremia and septic shock with HA-1 A human monoclonal antibody against endotoxin. A randomized, double blind, placebo controlled trial. N Engl J Med 324:429–436PubMedCrossRefGoogle Scholar
  76. 76.
    Bone RC, Balk RA, Fein AM et al (1995) A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomized, controlled study. Crit Care Med 1995; 23:994–1006CrossRefGoogle Scholar
  77. 77.
    Cunnion RE (1992) Clinical trials of immunotherapy for sepsis. Crit Care Med 20:721–723PubMedCrossRefGoogle Scholar
  78. 78.
    Silva AT, Bayston KF, Cohen J (1990) Prophylactic and therapeutic effects of a monoclonal antibody to tumour necrosis factor-alfa in experimental Gram-shock. J Inf Dis 162:421–427CrossRefGoogle Scholar
  79. 79.
    Exley AR, Cohen J, Buurman WA et al (1990) Monoclonal antibody to TNF in severe septic shock. Lancet 335:1275–1277PubMedCrossRefGoogle Scholar
  80. 80.
    Vincent JL, Bakker J, Marecaux G et al (1992) Administration of anti TNF antibodies improves left ventricular function in septic shock patients: results of a pilot study. Chest 101:810–815PubMedCrossRefGoogle Scholar
  81. 81.
    Dhainaut JFA, Vincent JL, Richard C et al (1995) DP 571, a humanized antibody to tumor necrosis factor-alpha: safety, pharmacokinetics, immune response, and influence of the antibody on cytokine concentrations in patients with septic shock. Crit Care Med 23:1461–1469PubMedCrossRefGoogle Scholar
  82. 82.
    Cohen J, Carlet J for the INTERSEPT group (1996) INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis. Crit Care Med 24:1431–1440PubMedCrossRefGoogle Scholar
  83. 83.
    Rheinhart K, Wiegand-Lohnert C, Grimminger F et al (1996) Assessment of the safety and efficacy of the monoclonal anti-tumour necrosis factor antibody fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose ranging study. Crit Care Med 24:733–742CrossRefGoogle Scholar
  84. 84.
    Arend WP (1991) Interleukin 1 receptor antagonist: a new member of interleukin 1 family. J Clin Invest 88:1445–1451PubMedCrossRefGoogle Scholar
  85. 85.
    Granowitz EV, Santos AA, Poutsaka DD et al (1991) Production of interleukin-1 receptor antagonist during experimental endotoxemia. Lancet 1338:1423–1424CrossRefGoogle Scholar
  86. 86.
    Fisher CJ, Slotman GJ, Opal SM et al (1994) Initial evaluation of human recombinant interleukin 1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open label, placebo-controlled multicentre trial. Crit Care Med 22:12–21PubMedGoogle Scholar
  87. 87.
    Fisher CJ, Dhainaut JF, Opal SM et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double blind, placebo-controlled trial. JAMA 271:1836–1843PubMedCrossRefGoogle Scholar
  88. 88.
    Knaus WA, Harrell FE, Lebreque JF et al (1996) Use of predicted risk of mortality to evaluate the efficacy of anticytokine therapy in sepsis. Crit Care Med 24:46–56PubMedCrossRefGoogle Scholar
  89. 89.
    Opal SM, Fisher CJ, Dhainaut JFA et al (1997) Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double blind, placebo-controlled, multicenter trial. Crit Care Med 25:1115–1124PubMedCrossRefGoogle Scholar
  90. 90.
    Bazzoni F, Beutler B (1996) Seminars in Medicine at the Beth Israel Hospital, Boston: the tumour necrosis factor ligand and receptor families. N Engl J Med 34:1717–1725Google Scholar
  91. 91.
    Sorkine P, Setton A, Halpern P et al (1995) Soluble tumour necrosis factor receptors reduce bowel ischemia-induced lung permeability and neutrophil sequestration. Crit Care Med 23:1377–1381PubMedCrossRefGoogle Scholar
  92. 92.
    Van Zee KJ, Kohno T, Fisher E et al (1992) Tumour necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumour necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 89:4845–4849PubMedCrossRefGoogle Scholar
  93. 93.
    Mohler KM, Torrance DS, Smith CA et al (1993) Soluble tumour necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 151:1548–1561PubMedGoogle Scholar
  94. 94.
    Fisher CJ, Agosti JA, Opal SM et al (1996) Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. N Engl J Med 334:1697–1702PubMedCrossRefGoogle Scholar
  95. 95.
    Abraham E, Glauser MP, Butler T et al (1997) p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. JAMA 277:1531–1538PubMedCrossRefGoogle Scholar
  96. 96.
    Goldie AS, Fearon KC, Ross JA et al (1995) Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. JAMA 274:172–177PubMedCrossRefGoogle Scholar
  97. 97.
    Bone RC (1992) Phospholipids and their inhibitors: a critical evaluation of their role in the treatment of sepsis. Crit Care Med 20:884–890PubMedCrossRefGoogle Scholar
  98. 98.
    Sun X, Hsueh W (1992) Bowel necrosis induced by tumour necrosis factor in rats is mediated by platelet activating factor. J Clin Invest 81:1328–1331CrossRefGoogle Scholar
  99. 99.
    Dhainaut JFA, Tenaillon A, Le Tulzo Y et al (1994) Platelet-activating factor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22:1720–1728PubMedGoogle Scholar
  100. 100.
    Dhainaut JFA, Tenaillon A, Hemmer M et al (1998) Confirmatory platelet-activating factor receptor antagonist trial in patients with severe Gram-negative bacterial sepsis: A phase III, randomized double-blind, placebo-controlled, multicenter trial. Crit Care Med 26:1963–1971PubMedCrossRefGoogle Scholar
  101. 101.
    Bollaert PE, Charpentier C, Levy B et al (1998) Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 26:645–650PubMedCrossRefGoogle Scholar
  102. 102.
    Ronco C, Bellomo R (1999) Continuous renal replacement therapy in the intensive care unit. Intensive Care Med 781–789Google Scholar
  103. 103.
    De Vriese AS, Vanholder RC, Pascual M et al (1999) Can inflammatory cytokines be removed efficiently by continuous renal replacement therapies? Intensive Care Med 25: 903–910PubMedCrossRefGoogle Scholar
  104. 104.
    Barzilay E, Kessler D, Berlot G et al (1989) The use of extracorporeal supportive techniques as additional treatment for sepsis-induced MOF patients. Crit Care Med 17:634–637PubMedCrossRefGoogle Scholar
  105. 105.
    Berlot G, Gullo A, Fasiolo S et al (1997) Hemodynamic effects of plasma exchange in septic patients: preliminary report. Blood Purification 15:45–53PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • G. Berlot
  • U. Lucangelo
  • A. Gullo

There are no affiliations available

Personalised recommendations