Clinical Trials of Mediator-Targeted Therapy in Sepsis

  • J. C. Marshall
Conference paper


Over the past two decades, more than five dozen phase II and phase III randomized controlled trials have been undertaken, testing the hypothesis that modulation of the host inflammatory response can improve survival in sepsis. Despite a compelling pre-clinical rationale, and promising preliminary data, none of these have led to the licensing of new therapies. It has even been suggested that the recurring failure of well-designed clinical studies to demonstrate improved sur-vival for a variety of different therapeutic approaches should lead to a moratorium on clinical research, until the reasons for this failure are better understood [1]. Yet important insights can be gleaned from the body of work that has been performed to date. The b iolog ic concept remains v iable; the challenges involved in clin i c al investigation are formidable.


Septic Shock Acute Pancreatitis Severe Sepsis Sepsis Syndrome Negative Infection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nasraway SA (1999) Sepsis research: We must change course. Crit Care Med 27:427–430PubMedCrossRefGoogle Scholar
  2. 2.
    Michalek SM, Moore RN, Mcghee JR et al (1980) The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infect Dis 141:55–63PubMedCrossRefGoogle Scholar
  3. 3.
    Tracey KJ, Fong Y, Hesse DG et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330:662–664PubMedCrossRefGoogle Scholar
  4. 4.
    Arend WP (1991) Interleukin-1 receptor antagonist. A new member of the interleukin-1 family. J Clin Invest 88:1445–1451PubMedCrossRefGoogle Scholar
  5. 5.
    Marshall JC, Creery D (1998) Pre-clinical models of sepsis. Sepsis 2:187–197CrossRefGoogle Scholar
  6. 6.
    Morrison DC, Ulevitch RJ (1978) The effects of bacterial endotoxins on host mediation systems. Am J Pathol 93:527–617Google Scholar
  7. 7.
    Wright SD, Ramos RA, Tobias PS et al (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433PubMedCrossRefGoogle Scholar
  8. 8.
    McCabe WR, Jackson GG (1962) Gram negative bacteremia. Etiology and ecology. Arch Intern Med 110:83–91CrossRefGoogle Scholar
  9. 9.
    Maclean LD, Mulligan WG, Mclean APH, Duff JH (1967) Patterns of septic shock in man — A detailed study of 56 patients. Ann Surg 166:543–562PubMedCrossRefGoogle Scholar
  10. 10.
    Walker RI (1978) The contribution of intestinal endotoxin to mortality in hosts with compromised resistance: a review. Exp Hematol 6:172–184PubMedGoogle Scholar
  11. 11.
    Van Deventer SJH, Ten Cate JW, Tytgat GNJ (1988) Intestinal endotoxemia. Clinical Significance. Gastroenterology 94:825–831PubMedGoogle Scholar
  12. 12.
    Ziegler EJ, Fisher CJ, Sprung CL et al (1991) Treatment of gram-negative bacteremia and septic shock with HA-lA human monoclonal antibody against endotoxin. N Engl J Med 324: 429–436PubMedCrossRefGoogle Scholar
  13. 13.
    McCloskey RV, Straube RC, Sanders C et al (1994) Treatment of septic shock with human monoclonal antibody HA-1 A. A randomized double-blind, placebo-controlled trial. Ann Intern Med 121:1–5PubMedGoogle Scholar
  14. 14.
    Greenman RL, Schein RMH, Martin MA et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266: 1097–1102PubMedCrossRefGoogle Scholar
  15. 15.
    Bone RC, Balk RA, Fein AM et al (1995) A second large controlled clinical study of E5,a monoclonal antibody to endotoxin: Results of a prospective, multicenter, randomized, controlled trial. Crit Care Med 23:994–1006PubMedCrossRefGoogle Scholar
  16. 16.
    Ziegler EJ, McCutchan JA, Fierer J et al (1982) Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307:1225–1230PubMedCrossRefGoogle Scholar
  17. 17.
    Willatts SM, Radford S, Leitermann M (1995) Effect of the antiendotoxic agent, taurolidine, in the treatment of sepsis syndrome: A placebo-controlled, double-blind trial. Crit Care Med 23:1033–1039PubMedCrossRefGoogle Scholar
  18. 18.
    Giroir BP, Quint PA, Barton P et al (1997) Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/permeability increasing protein in children with severe meningococcal sepsis. Lancet 350:1439–1443PubMedCrossRefGoogle Scholar
  19. 19.
    Flynn PM, Shenep JL, Stokes DC et al (1987) Polymyxin B Moderates acidosis and hypotension in established experimental gram-negative septicemia. J Inf Dis 156:706–712CrossRefGoogle Scholar
  20. 20.
    Lin E, Coyle SM, Randhawa S et al (1998) Polymyxin-622 prevents endotoxin-induced inflammation in humans. Surg Forum 49:6–8Google Scholar
  21. 21.
    Bone RC, Fisher CJ, Clemmer TP et al (1989) Sepsis syndrome: a valid clinical entity. Crit Care Med 17:389–393PubMedCrossRefGoogle Scholar
  22. 22.
    Wortel CH, von der Mohlen MA, van Deventer SJ et al (1992) Effectiveness of a human monoclonal anti-endotoxin antibody (HA-1 A) in gram-negative sepsis: relationship to endotoxin and cytokine levels. J Infect Dis 168:1367–1374CrossRefGoogle Scholar
  23. 23.
    Fink MP (1995) Another negative clinical trial of a new agent for the treatment of sepsis: Rethinking the process of developing adjuvant treatments for serious infections. Crit Care Med 23:989–991PubMedCrossRefGoogle Scholar
  24. 24.
    Giroir BP (1993) Mediators of septic shock: New approaches for interrupting the endogenous inflammatory cascade. Crit Care Med 21:780–789PubMedCrossRefGoogle Scholar
  25. 25.
    Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871PubMedCrossRefGoogle Scholar
  26. 26.
    Michie HR, Spriggs DR, Manogue KR et al (1988) Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104:280–286PubMedGoogle Scholar
  27. 27.
    Takashima K, Tateda K, Matsumoto T et al (1997) Role of tumor necrosis factor alpha in pathogenesis of pneumococcal pneumonia in mice. Infect Immun 65:257–260PubMedGoogle Scholar
  28. 28.
    Deckert-Schluter M, Bluethmann H, Rang A et al (1998) Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol 160:3427–3436PubMedGoogle Scholar
  29. 29.
    Casey LC, Balk RA, Bone RC (1993) Plasma cytokines and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771–778PubMedGoogle Scholar
  30. 30.
    Martin C, Boisson C, Haccoun M et al (1997) Patterns of cytokine evolution (tumor necrosis factor-α and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med 25:1813–1819PubMedCrossRefGoogle Scholar
  31. 31.
    Pellegrini JD, Puyana JC, Lapchak PH et al (1996) A membrane TNFα/TNFR ratio correlates to MODS score and mortality. Shock 6:389–396PubMedCrossRefGoogle Scholar
  32. 32.
    Calvano SE, van der Poll T, Coyle SM et al (1996) Monocyte tumor necrosis factor receptor levels as a predictor of risk in human sepsis. Arch Surg 131:434–437PubMedCrossRefGoogle Scholar
  33. 33.
    Fisher CJ, Dhainaut J-FA, Opal SM et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. JAMA 271:1836–1843PubMedCrossRefGoogle Scholar
  34. 34.
    Sprung CL, Finch RG, Thijs LG, Glauser MP (1996) International sepsis trial (INTERSEPT): Role and impact of a clinical evaluation committee. Crit Care Med 24:1441–1447PubMedCrossRefGoogle Scholar
  35. 35.
    Dinarello CA (1996) Biological basis for interleukin-1 in disease. Blood 87:2095–2147PubMedGoogle Scholar
  36. 36.
    Hannum CH, Wilcox CJ, Arend WP et al (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 343:336–340PubMedCrossRefGoogle Scholar
  37. 37.
    Pecyk RA, Fraser-Smith EB, Matthews TR (1989) Efficacy of interleukin-1 b against systemic Candida albicans infections in normal and immunosuppressed mice. Infect Immun 57:3257–3258PubMedGoogle Scholar
  38. 38.
    Fisher CJ Jr, Slotman GJ, Opal SM et al (1994) Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: A randomized, open-label, placebo-controlled multicenter trial. Crit Care Med 22:12–21PubMedGoogle Scholar
  39. 39.
    Opal SM, Fisher CJ Jr, Dhainaut JF et al (1997) Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. Crit Care Med 25:1115–1124PubMedCrossRefGoogle Scholar
  40. 40.
    Docke WD, Randow F, Syrbe U et al (1997) Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nature Med 3:678–681PubMedCrossRefGoogle Scholar
  41. 41.
    Dale DC, Liles WC, Summer WR, Nelson S (1995) Review: Granulocyte colony-stimulating factor role and relationships in infectious diseases. J Infect Dis 172:1075CrossRefGoogle Scholar
  42. 42.
    Nelson S, Belknap SM, Carlson RW et al (1998) A randomized controlled trial of Filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia. J Infect Dis 178:1075–1080PubMedCrossRefGoogle Scholar
  43. 43.
    Marshall JC (1998) The effects of granulocyte colony-stimulating factor (G-CSF) in pre-clinical models of infection and acute inflammation. Sepsis 2:213–220CrossRefGoogle Scholar
  44. 44.
    Anderson BO, Bensard DD, Harken AH (1991) The role of platelet activating factor and its antagonists in shock, sepsis, and multiple organ failure. Surg Gynecol Obstet 172:415–424PubMedGoogle Scholar
  45. 45.
    Dhainaut J-FA, Tenaillon A, Le Tulzo Y et al (1994) Platelet-activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: A randomized, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22:1720–1728PubMedGoogle Scholar
  46. 46.
    Dhainaut JF, Tenaillon A, Hemmer M et al (1998) Confirmatory platelet-activating factor receptor antagonist trial in patients with severe gram-negative bacterial sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. Crit Care Med 26:1963–1971PubMedCrossRefGoogle Scholar
  47. 47.
    Kingsnorth AN, Galloway SW, Formela LJ (1995) Randomized, double-blind phase II trial of lexipafant, a platelet-activating factor receptor antagonist in human acute pancreatitis. Br J Surg 82:1414–1420PubMedCrossRefGoogle Scholar
  48. 48.
    Kingsnorth AN, for the British Acute Pancreatitis Study Group (1997) Early treatment with lexipafant, a platelet-activating factor antagonist reduces mortality in acute pancreatitis: a double-blind, randomized placebo controlled study. Gastroenterology 112[Suppl]:A453Google Scholar
  49. 49.
    Haupt MT, Jastremski MS, Clemmer TP et al (1991) Effect of ibuprofen in patients with severe sepsis: A randomized, double blind, multicenter study. Crit Care Med 19:1339–1347PubMedCrossRefGoogle Scholar
  50. 50.
    Bernard GR, Wheeler AP, Russell JA et al (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. N Engl J Med 336:912–918PubMedCrossRefGoogle Scholar
  51. 51.
    Fein AM, Bernard GR, Criner GJ et al (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127): Results of a randomised, double-blind, placebo-controlled trial. JAMA 277:482–487PubMedCrossRefGoogle Scholar
  52. 52.
    Billiar TR (1995) Nitric oxide: Novel biology with clinical relevance. Ann Surg 221:339–349PubMedCrossRefGoogle Scholar
  53. 53.
    Grover R, Lopez A, Lorente J et al (1999) Multicenter, randomized, placebo-controlled, double blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 27:A33CrossRefGoogle Scholar
  54. 54.
    Meduri GU (1999) An historical review of glucocorticoid treatment in sepsis: Disease pathophysiology and the design of treatment investigation. Sepsis 3:21–38CrossRefGoogle Scholar
  55. 55.
    Bone RC, Fisher CJ, Clemmer TP et al (1987) A controlled clinical trial of high dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:654–658CrossRefGoogle Scholar
  56. 56.
    Hinshaw et al The Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect of high dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med 317:659–665CrossRefGoogle Scholar
  57. 57.
    Bollaert PE, Charpentier C, Levy B et al (1998) Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 26:627–630CrossRefGoogle Scholar
  58. 58.
    Spriggs DR, Sherman ML, Imamura K et al (1990) Phospholipase A2 activation and autoinduction of tumor necrosis factor gene expression by tumor necrosis factor. Cancer Res 50: 7101–7107PubMedGoogle Scholar
  59. 59.
    Mcgilvray ID, Rotstein OD (1998) The role of coagulation in systemic inflammation: A review of the experimental evidence. Sepsis 2:199–208CrossRefGoogle Scholar
  60. 60.
    Bernard GR, Hartman DL, Helterbrand JD, Fisher CJ (1999) Recombinant human activated protein C (rhAPC) produces a trend toward improvement in morbidity and 28 day survival in patients with severe sepsis. Crit Care Med 27:A33CrossRefGoogle Scholar
  61. 61.
    Eisele B, Lamy M, Thijs LG et al (1998) Antithrombin III in patients with severe sepsis. Intensive Care Med 24:663–672PubMedCrossRefGoogle Scholar
  62. 62.
    Baudo F, Caimi TM, deCataldo F et al (1998) Antithrombin III (ATIII) replacement therapy in patients with sepsis and/or postsurgical complications: a controlled double-blind, randomized, multicenter study. Intensive Care Med 24:336–342PubMedCrossRefGoogle Scholar
  63. 63.
    Foxwell BMJ, Barrett K, Feldmann M (1992) Cytokine receptors: structure and signal transduction. Clin Exp Immunol 90:161–169PubMedCrossRefGoogle Scholar
  64. 64.
    Novogrodsky A, Vanichkin A, Patya M et al (1994) Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science 264:1319–1322PubMedCrossRefGoogle Scholar
  65. 65.
    Sevransky JE, Shaked G, Novogrodsky A et al (1997) Tyrphostin AG 556 improves survival and reduces multiorgan failure in canine Escherichia Coli peritonitis. J Clinic Invest 99:1966–1973CrossRefGoogle Scholar
  66. 66.
    Nathens AB, Bitar R, Bujard M et al (1997) Pyrrolidine dithiocarbamate attenuates endotoxin-induced lung injury. Am J Resp Cell Mol Biol 17:608–616Google Scholar
  67. 67.
    Wang H, Bloom O, Zhang M et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 284Google Scholar
  68. 68.
    Creery D, Kumar A (1998) The potential for interleukin 10-directed therapies in human sepsis. Sepsis 2(3):209–212CrossRefGoogle Scholar
  69. 69.
    Jimenez MF, Watson RWG, Parodo J et al (1997) Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome (SIRS). Arch Surg 132:1263–1270PubMedCrossRefGoogle Scholar
  70. 70.
    Keel M, Ungethum U, Steckholzer U et al (1997) Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90(9): 3356–3363PubMedGoogle Scholar
  71. 71.
    Dellinger RP, Opal SM, Rotrosen D et al (1997) From the bench to the bedside: The future of sepsis research. Chest 111:744–753CrossRefGoogle Scholar
  72. 72.
    Petros AJ, Marshall JC, van Saene HKF (1995) Is mortality an appropriate endpoint for clinical trials in critical illness? Lancet 345:369–371PubMedCrossRefGoogle Scholar
  73. 73.
    Hebert PC (1997) Mortality as an outcome in sepsis trials. Sepsis 1(1):35–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • J. C. Marshall

There are no affiliations available

Personalised recommendations