Skip to main content

New modes of ventilation in paediatrics

  • Chapter
  • 110 Accesses

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

Since its first extensive use during the polio epidemics of the 1950s, mechanical ventilation has proved to be of undoubted value in improving survival in many patients affected by severe respiratory failure of varying origin. In the last 25 years, artificial ventilation has tremendously improved the recovery of neonates, especially those born prematurely. However, mechanical ventilation can, in itself, result not only in pulmonary damage (interstitial emphysema, alveolar and bronchiolar damage, pneumothorax, and bronchopulmonary dysplasia) but also in damage to other organs, specifically when high FiO2 has been used (i.e., retrolental fibroplasia) [1–4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276:357–368

    Article  PubMed  Google Scholar 

  2. Goetzman BW (1986) Understanding bronchopulmonary dysplasia. Am J Dis Child 140:332–334

    PubMed  CAS  Google Scholar 

  3. Chambers HM, van Velzen D (1989) Ventilator-related pathology in the extremely immature lung. Pathology 21:79–83

    Article  PubMed  CAS  Google Scholar 

  4. Wohl MEB (1990) Bronchopulmonary dysplasia in adulthood. N Engl J Med 323:1834–1836

    Article  PubMed  CAS  Google Scholar 

  5. Kafer ER (1971) Pulmonary oxygen toxicity. A review of the evidence for acute and chronic oxygen toxicity in man. Br J Anaesth 43:687–695

    Article  PubMed  CAS  Google Scholar 

  6. Holm BA, Matalon S, Finkelstein JH, Notter RH (1988) Type II pneumocyte changes during hyperoxic lung injury and recovery. J Appl Physiol 65:2672–2678

    PubMed  CAS  Google Scholar 

  7. Saugstad OD (1985) Oxygen radicals and pulmonary damage. Pediatr Pulmonol 1:167–175

    Article  PubMed  CAS  Google Scholar 

  8. Nilsson R, Grossmann G, Robertson B (1980) Pathogenesis of neonatal lung lesions induced by artificial ventilation: evidence against the role of barotrauma. Respiration 40:218–225

    Article  PubMed  CAS  Google Scholar 

  9. Kolobow T, Moretti MP, Fumagalli R, Mascheroni D, Prato P, Chen V, Joris M (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135:312–315

    PubMed  CAS  Google Scholar 

  10. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive endexpiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  CAS  Google Scholar 

  11. Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol 69:956–961

    PubMed  CAS  Google Scholar 

  12. Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18:139–141

    Article  PubMed  CAS  Google Scholar 

  13. Slutsky AS (1993) Mechanical ventilation. Chest 104:1833–1859

    Article  PubMed  CAS  Google Scholar 

  14. Maclntyre NR (1993) Clinically available new strategies for mechanical ventilatory support. Chest 104:560–565

    Article  Google Scholar 

  15. Tobin MJ (1994) Mechanical ventilation. N Eng J Med 330:1056–1061

    Article  CAS  Google Scholar 

  16. Slustsky AS (1994) Consensus conference on mechanical ventilation. Intensive Care Med 20:64–79

    Article  Google Scholar 

  17. Stewart TE, Slutsky AS (1995) Mechanical ventilation: a shifting philosophy. Curr Opinion Crit Care 1:49–56

    Google Scholar 

  18. Smith BE (1990) High frequency ventilation: past, present and future? Brit J Anaesth 65:130–138

    Article  PubMed  CAS  Google Scholar 

  19. The HIFI Study Group (1989) High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 320:88–93

    Article  Google Scholar 

  20. Kinsella JP, Clark RH (1993) High-frequency oscillatory ventilation in paediatric critical care. Crit Care Med 21:174–175

    Article  PubMed  CAS  Google Scholar 

  21. Arnold JH (1996) High frequency oscillatory ventilation: theory and practice in paediatric patients. Paediatr Anaesth 6:437–441

    Article  PubMed  CAS  Google Scholar 

  22. Carter MJM, Gerstmann DR, Clark MRH, Snider MG, Cornish JD, Null DM, deLemos RA (1990) High-frequency oscillatory ventilation and extracorporeal membrane oxygenation for the treatment of acute neonatal respiratory failure. Pediatrics 85:159–164

    PubMed  CAS  Google Scholar 

  23. Man GCW, Ahmed IH, Logus JW, Man SFP (1987) High-frequency oscillatory ventilation increases canine pulmonary epithelial permeability. J Appl Physiol 63:1871–1876

    PubMed  CAS  Google Scholar 

  24. Clark RH, Wiswell TE, Null DM, deLemos RA, Coalson JJ (1987) Tracheal and bronchial injury in high-frequency oscillatory ventilation compared with conventional positive pressure ventilation. J Pediatr 111:114–118

    Article  PubMed  CAS  Google Scholar 

  25. Mammel MC, Ophoven JP, Lewallen PK, Gordon MJ, Boros SJ (1991) Acute airway injury during high-frequency jet ventilation and high-frequency oscillatory ventilation. Crit Care Med 19:394–398.

    Article  PubMed  CAS  Google Scholar 

  26. Nielsen JB, Sjostrand UH, Edgren EL, Lichtwarck-Aschoff M, Svensson BA (1991) An experimental study of different ventilatory modes in piglets in severe respiratory distress induced by surfactant depletion. Intensive Care Med 17:225–233

    Article  PubMed  CAS  Google Scholar 

  27. Sjostrand UH, Lichtwarck-Aschoff M, Nielsen JB, Markstrom A, Larrson A, Svensson BA, Wagenius GA, Nordgren KA (1995) Different ventilatory approaches to keep the lung open. Intensive Care Med 21:310–318

    Article  PubMed  CAS  Google Scholar 

  28. Marraro G (1994) Pressure support ventilation (PSV) and pressure regulated volume control (PRVC): new methods of ventilation for newborns. In: Minoli I (ed) Neonatal Intensive Care. 16th Inter Symp, Sanremo, pp 33–34

    Google Scholar 

  29. Marraro G (1998) Intraoperative ventilation in paediatrics. Paediatric Anaesthesia 8:373–382

    Article  PubMed  CAS  Google Scholar 

  30. Marraro G (1997) New modes of pulmonary ventilation. In: Dalens B, Murat I, Bush G (eds) Advances in paediatric anaesthesia. FEAPA, Paris, pp 57–88

    Google Scholar 

  31. Hazelzet JA (1992) New ventilatory modes in severe respiratory failure. (Abstract). First World Congress of Pediatric Intensive Care, Baltimore

    Google Scholar 

  32. Marraro G (1994) Pressure regulated volume control ventilation and pressure support ventilation. CME Programme, Jaipur, pp 32–33

    Google Scholar 

  33. Marraro G, Mannucci F, Galbiati AM et al (1994) The advantages of a new mode of artificial ventilation: pressure regulated volume controlled (PRVC) ventilation. Pediatr Res 35(Suppl A344):2047

    Google Scholar 

  34. Marraro G, Casiraghi G, Galbiati AM (1995) A study of pressure regulated volume control ventilation in natural surfactant treated infants with RDS. Pediatr Res 4(Suppl A223):1321

    Google Scholar 

  35. Mori N, Suzuki M (1994) Trigger sensitivity of Servo 300 (Siemens Elema) for pressure support ventilation in an infant. Paediatr Anaesth 4:27–34

    Article  Google Scholar 

  36. Marraro G (1994) Selective endobronchial intubation in paediatrics: the Marraro Paediatric Bilumen Tube. Paediatr Anaesth 4:255–258

    Article  Google Scholar 

  37. Marraro G (1987) Synchronized independent lung ventilation in pediatric age. ACP Applied Cardiopulm Pathophys 2:283–288

    Google Scholar 

  38. Marraro G, Marinari M, Rataggi M (1987) The clinical application of SILV in pulmonary disease with unilateral prevalence in pediatrics. Int J Clin Mornit Comput 4:123–129

    Article  CAS  Google Scholar 

  39. Marraro G (1990) Ventilation à poumons separés chez l’enfant au cours de la l.ère année de vie. Cah Anaesthesiol 38:377–380

    CAS  Google Scholar 

  40. Marraro G (1992) Simultaneous independent lung ventilation in pediatric patients. Crit Care Clin 8:131–145

    PubMed  CAS  Google Scholar 

  41. Versprille A, Hrachovina V, Jansen JRC (1995) Alternating versus synchronous ventilation of left and right lungs in piglets. Intensive Care Med 21:1009–1015

    Article  PubMed  CAS  Google Scholar 

  42. Frostell C, Hedenstierna G, Cronestrand R (1995) Asynchronous ventilation in the dogs: effects on lung blood flow and gas exchange. Clin Physiol 5(Suppl 3):59–64

    Google Scholar 

  43. Colombo A, Dell’Avo A, Nacci A, Personeni O, Spada P (1987) Hospital procedure and nursing for patients treated with synchronized independent lung ventilation (sILV). Intensive Care Nurs 3:117–124

    Article  PubMed  CAS  Google Scholar 

  44. Brochard L, Pluskwa F, Lemaire F (1987) Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis 136:411–415

    Article  PubMed  CAS  Google Scholar 

  45. Mori N, Suzuki M (1994) Trigger sensitivity of Servo 300 (Siemens Elema) for pressure support ventilation in an infant. Paediatr Anaesth 4:27–34

    Article  Google Scholar 

  46. Tokioka H, Kinjo M, Hirakawa M (1993) The effectiveness of pressure support ventilation for mechanical ventilatory support in children. Anaesthesiology 78:880–884

    Article  CAS  Google Scholar 

  47. Bonmarchand G, Chevron V, Chopin C, Jusserand D, Girault C, Moritz F, Leroy J, Pasquis P (1996) Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease. Intensive Care Med 22:147–154

    Article  Google Scholar 

  48. Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139:513–521

    Article  PubMed  CAS  Google Scholar 

  49. Kacmarek RM(1988) The role of pressure support ventilation in reducing work of breathing. Respir Care 33:99–120

    Google Scholar 

  50. Esteban A, Frutos F, Tobin MJ (1995) A comparison of four methods of weaning from mechanical ventilation. N Engl J Med 332:345–350

    Article  PubMed  CAS  Google Scholar 

  51. Mancebo J, Amaro P, Mollo JL, Lorino H, Lemaire F, Brochard L (1995) Comparison of the effects of pressure support ventilation delivered by three different ventilators during weaning from mechanical ventilation. Intensive Care Med 21:913–919

    Article  PubMed  CAS  Google Scholar 

  52. Kanak R, Fahey PJ, Vanderward C (1985) Oxygen cost of breathing: changes dependent upon mode of mechanical ventilation. Chest 87:126–127

    Article  PubMed  CAS  Google Scholar 

  53. Gullberg N, Wimberg P, Selldèn H (1996) Pressure support ventilation increase cardiac output in neonates and infants. Paediatr Anaesth 6:311–315

    Article  PubMed  CAS  Google Scholar 

  54. Hird MF, Greenough A (1991) Patient triggered ventilation in chronically ventilator-dependent infants. Eur J Pediatr 150:732–734

    Article  PubMed  CAS  Google Scholar 

  55. Fiastro JF, Quan BF, Habib MP (1986) Pressure support compensation for inspiratory work due to endotracheal tubes and demand CPAP. Chest 89:441S

    Google Scholar 

  56. Kylstra JA, Tissing MO, Van der Maen A (1962) Of mice as fish. Trans Am Soc Artif Intern Organs 8:378–383

    Article  PubMed  CAS  Google Scholar 

  57. Clark LC, Gollan F (1966) Survival of mammals breathing organic liquids equilibrated with oxygen at atmophere pressure. Science 152:1755–1756

    Article  PubMed  CAS  Google Scholar 

  58. Moskowitz GD (1970) A mechanical respirator for control of liquid breathing. Fed Proc 29:1751–1752

    PubMed  CAS  Google Scholar 

  59. Shaffer TH, Lowe CA, Bhutani VK, Douglas PR (1983) Liquid ventilation: effects on pulmonary function in meconium stained lambs. Pediatr Res 19:49–53

    Google Scholar 

  60. Shaffer TH, Wolfson MR, Clark LC (1992) Liquid ventilation. Pediatr Pulmunol 14:102–109

    Article  CAS  Google Scholar 

  61. Fuhrman BP, Paczan PR, De Francisis M (1991) Perfluorocarbon-associated gas-exchange. Crit Care Med 19:712–722

    Article  PubMed  CAS  Google Scholar 

  62. Lachmann B, Tucuncu AS, Bos JA, Faithfull NS (1991) Intratracheal perfluorooctylbro-mide (PFOB) in combination with mechanical ventilation. International Society for Oxygen Transport to Tissues, Willemstand, A24–A30

    Google Scholar 

  63. Fuhrman BP (1990) Perfluorocarbon liquid ventilation: the first human trial. J Pediatr 117:73–74

    Article  PubMed  CAS  Google Scholar 

  64. Marraro G (1997) La ventilation liquide partielle. Cah Anaesthesiol 45:383–388

    Google Scholar 

  65. Marraro G, Bonati M, Ferrari A, Barzaghi MM, Pagani C, Bortolotti A, Galbiati AM, Luchetti M, Croce A (1998) Perfluorocarbon bronchoalveolar lavage and liquid ventilation versus saline bronchoalveolar lavage in adult guinea pigs experimental model of meconium inhalation. Intensive Care Med 24:501–508

    Article  PubMed  CAS  Google Scholar 

  66. Foust R III, Tran NN, Cox C, Miller TF, Greenspan JS, Wolfson MR, Shaffer TH (1996) A liquid assisted ventilation: an alternative ventilation strategy for acute meconium aspiration injury. Pediatr Pulmonol 21:316–322

    Article  PubMed  Google Scholar 

  67. Shaffer TH, Wolfson MR (1996) Liquid ventilation an alternative ventilation strategy for management of neonatal respiratory distress. Eur J Pediatr 155(Suppl 2):30–34

    Article  Google Scholar 

  68. Lowe Leach C, Greenspan JS, Rubenstein SD, Shaffer TH, Wolfson MR, Jackson JC, DeLemos R, Fuhrman BP, for the Liqui Vent Study Group (1996) Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. N Engl J Med 335:761–767

    Article  PubMed  CAS  Google Scholar 

  69. Gauger PG, Prenikoff T, Schreiner RJ, Moler FW, Hirschl RB (1996) Initial experience with partial liquid ventilation in pediatric patients with the acute respiratory distress syndrome. Crit Care Med 24:16–22

    Article  PubMed  CAS  Google Scholar 

  70. Hirschl RB, Tooley R, Parent A, Johnson K, Bartelett RH (1996) Evaluation of gas exchange, pulmonary compliance, and lung injury during total and partial liquid ventilation in the acute respiratory distress syndrome. Crit Care Med 24:1001–1008

    Article  PubMed  CAS  Google Scholar 

  71. Modell JH, Tham MK, Calderwood HW, Ruiz BC (1973) Distribution and retention of fluorocarbon in mice and dogs after injection or liquid ventilation. Toxicol Appl Pharmacol 26:86–92

    Article  PubMed  CAS  Google Scholar 

  72. Shaffer TH, Wolfson MR, Greenspan JS, Hoffman RE, Davis SL, Clark Jr LC (1996) Liquid ventilation in premature lambs: uptake, biodistribution and elimination of perfluorodecalin liquid. Reprod Fertil Dev 8:409–416

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this chapter

Cite this chapter

Marraro, G.A. (1999). New modes of ventilation in paediatrics. In: Salvo, I., Vidyasagar, D. (eds) Anaesthesia and Intensive Care in Neonates and Children. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2282-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2282-9_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0043-8

  • Online ISBN: 978-88-470-2282-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics