Advertisement

Pharmacological and Pharmacokinetic Basis of Chlamydia pneumoniae Treatment

  • G. Gialdroni Grassi

Abstract

Chlamydia pneumoniae, like other Chlamydia species, is an obligate intracellular parasite. For its growth to be inhibited the antimicrobial agent must penetrate cells and be able to interfere with protein synthesis of the micro-organism. Therefore, antibiotics that are likely to be active against C. pneumoniae are macrolides, tetracyclines, chloramphenicol, quinolones and rifampicin, which have demonstrated the capacity to enter cells and develop antimicrobial activity intracellularly for C. psittaci and C. trachomatis, as well as for other pathogens.

Keywords

Alveolar Macrophage Antimicrob Agent Chlamydia Trachomatis Minimal Inhibitory Conce Obligate Intracellular Parasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergogne-Bérézin E, Valleé E (1994) Pharmacokinetics of antibiotics in respiratory tissues and fluids. In: Pennington JE (ed) Respiratory infections: diagnosis and management (3rd edn). Raven Press, New York, pp 715–740Google Scholar
  2. 2.
    Baldwin DR, Honeybourne D, Wise R (1992) Pulmonary disposition of antimicrobial agents: methodological consideration. Antimicrob Agents Chemother 36: 1171–1175PubMedGoogle Scholar
  3. 3.
    Johnson JD, Hand WL, Francis JB, King-Thompson NK, Corwin RW (1980) Antibiotic uptake by alveolar macrophages. J Lab Clin Med 95: 429–439PubMedGoogle Scholar
  4. 4.
    Prokesch RC, Hand WL (1982) Antibiotic entry into polymorphonuclear leukocytes. Antimicrob Agents Chemother 21: 373–380PubMedGoogle Scholar
  5. 5.
    Tulkens PM (1991) Intracellular pharmacokinetics and localization of antibiotics as predictors of their efficacy against intraphagocytic infections. Scand J Infect Dis Suppl 74: 209–217Google Scholar
  6. 6.
    Tulkens PM (1991) Intracellular distribution and activity of antibiotics. Eur J Clin Infect Dis 102: 100–106CrossRefGoogle Scholar
  7. 7.
    Peters DH, Clissod SP (1992) Clarithromycin. A review of its antimicrobial activity, pharmacokinetic property and therapeutic potential. Drugs 44: 117–164PubMedCrossRefGoogle Scholar
  8. 8.
    Carlier MB, Zenebergh A, Tulkens PM (1987) Cellular uptake and subcellular distribution of roxithromycin and erythromycin in phagocytic cells. J Antimicrob Chemother 20[Suppl B]: 47–56PubMedGoogle Scholar
  9. 9.
    Fraschini F, Scaglione F, Pintucci G, Maccarinelli G et al (1991) The diffusion of clarithromycin and roxithromycin into nasal mucosa, tonsil and in lung in humans. J Antimicrob Chemother 27[Suppl A]: 61–65PubMedGoogle Scholar
  10. 10.
    Bergogne-Bérézin E (1993) Tissue distribution of dirithromycin: comparison with erythromycin. J Antimicrob Chemother 31 [Suppl C]: 77–87PubMedGoogle Scholar
  11. 11.
    Anderson R, Joone G, van Rensburg CEJ (1988) An in vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, TE-031), a new macrolide antimicrobial agent. J Antimicrob Chemother 22: 923–933PubMedCrossRefGoogle Scholar
  12. 12.
    MacDonald PJ, Pruul H (1991) Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis 10: 828–833CrossRefGoogle Scholar
  13. 13.
    Foulds G, Shepard RM, Johnson RB (1990) The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother 25 [Suppl A]: 73–82PubMedGoogle Scholar
  14. 14.
    Baldwin DR, Honeybourne D, Wise R (1992) Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance. Antimicrob Agents Chemother 36: 1176–1180PubMedGoogle Scholar
  15. 15.
    Baldwin DR, Wise R, Andrews JM, Ashby JP et al (1990) Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J 3: 886–890PubMedGoogle Scholar
  16. 16.
    Patel KB, Xuan D, Nightingale CH, Tessier PR, Russomanno JH, Quintiliani R (1997) A comparison of the bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. In: Zinner SH, Young LS, Acar JF, Neu HC (eds) Expanding indications for the new macrolides, azalides and streptogramins. Dekker, New York, pp 439–446Google Scholar
  17. 17.
    Gump DW (1991) Antimicrobial susceptibility testing for some atypical microrganisms: chlamydiae, mycoplasms, rickettsia, and spirochetes. In: Lorian V (ed) Antibiotic in laboratory medicine (3rd edn). Williams & Wilkins, Baltimore, pp 279–294Google Scholar
  18. 18.
    Welsh LE, Gaydos CA, Quinn TC (1992) In vitro evaluation of activities of azithromycin, erythromycin and tetracyclines against Chlamydia trachomatis and Chlamydia pneumoniae. Antimicrob Agents Chemother 36: 291–294PubMedGoogle Scholar
  19. 19.
    Cooper MA, Baldwin D, Matthews RS, Andrews JM, Wise R (1991) In vitro susceptibility of Chlamydia pneumoniae (TWAR) to seven antibiotics. J Antimicrob Chemother 35: 407–413CrossRefGoogle Scholar
  20. 20.
    Hjelm E, Hulten K, Nystrom-Rosander C, Gustafsson J, Engstrand L, Cars O (1997) Assay of antibiotic susceptibility of Chlamydia pneumoniae. Scand J Infect Dis Suppl 104: 13–14PubMedGoogle Scholar
  21. 21.
    Lowdin E, Odenholt I, Cars O (1994) A new in vitro model for pharmacodynamic studies of antibiotics. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, Orlando, FL, 4–7 October, 1994, Abstr 100Google Scholar
  22. 22.
    Kuo C-C, Grayston JT (1988) In vitro drug susceptibility of Chlamydia sp. strain TWAR. Antimicrob Agents Chemother 32: 257–258PubMedGoogle Scholar
  23. 23.
    Atmar RL, Greenberg SB (1989) Pneumonia caused by Mycoplasma pneumoniae and the TWAR agent. Semin Respir Infect 4: 19–31PubMedGoogle Scholar
  24. 24.
    Bourke SJ (1993) Chlamydial respiratory infections. BMJ 306: 1219–1220PubMedCrossRefGoogle Scholar
  25. 25.
    Fenelon LE, Mumtaz G, Ridgway GL (1990) The in vitro susceptibility of Chlamydia pneumoniae. J Antimicrob Chemother 26: 763–767PubMedCrossRefGoogle Scholar
  26. 26.
    Chirwing K, Roblin PM, Hammerschlag MR (1989) In vitro susceptibilities of Chlamydia pneumoniae (Chlamydia sp. strain TWAR). Antimicrob Agents Chemother 33: 1634–1635Google Scholar
  27. 27.
    Orfila J, Haider F (1992) In vitro susceptibilities of Chlamydia pneumoniae strain IOL 207 against clarithromycin, compared to different molecules. In: Adam D, Lode H, Rubinstein E (eds) Recent advances in chemotherapy. Proceedings of the 17th International Congress of Chemotherapy, Berlin, 23–28 June, 1991. Futuramed, Munich, pp 2454-2455Google Scholar
  28. 28.
    Hammerschlag MR, Qumei KK, Roblin PM (1992) In vitro activities of azithromycin, clarithromycin, l-ofloxacin and other antibiotics against Chlamydia pneumoniae. Antimicrob Agents Chemother 36: 1573–1574PubMedGoogle Scholar
  29. 29.
    Ridgway GL, Salman H, Robbins MJ, Dencer C, Felmingham D (1997) The in vitro activity of grepafloxacin against Chlamydia spp, Mycoplasma spp, Ureaplasma urealyticum and Legionella spp. J Antimicrob Chemother 40[Suppl A]: 31–36PubMedCrossRefGoogle Scholar
  30. 30.
    Roblin PM, Hammerschlag MR (1997) In vitro activity of trovafloxacin against Chlamydia pneumoniae. Antimicrob Agents Chemother 41: 2033–2034PubMedGoogle Scholar
  31. 31.
    Felmingham D, Robbins MJ, Ingley K, Mathias I, Bhogal H, Leakey A, Ridgway GL, Gruneberg RN (1997) In vitro activity of trovafloxacin, a new fluoroquinolone, against recent clinical isolates. J Antimicrob Chemother 39[Suppl B]: 43–49PubMedCrossRefGoogle Scholar
  32. 32.
    Ridgway GL, Mumtaz C, Fenelon L (1991) In vitro activity of clarithromycin and other macrolides against the type strain of Chlamydia pneumoniae. J Antimicrob Chemother 27 [Suppl A]: 43–45PubMedGoogle Scholar
  33. 33.
    Roblin PM, Montalban G, Hammerschlag MR (1994) Susceptibilities to clarithromycin and erythromycin of isolates of Chlamydia pneumoniae from children with pneumonia. Antimicrob Agents Chemother 36: 1573–1574Google Scholar
  34. 34.
    Roblin PM, Sokolovskaya N, Hammerschlag MR (1997) Susceptibility to azithromycin to isolates of Chlamydia pneumoniae from patients with community-acquired pneumonia. In: Zinner SH, Young LR, Acar JF, Neu HC (eds) Expanding indications for the new macrolides, azalides, and streptogramins. Dekker, New York, pp 322–325Google Scholar
  35. 35.
    Roblin PM, Hammerschlag MR (1998) In vitro activity of a new ketolide antibiotic, HMR 3647, against Chlamydia pneumoniae. Antimicrob Agents Chemother 42: 1515–1516PubMedGoogle Scholar
  36. 36.
    Haider F, Eb F, Orfila J (1995) Ketolides and Chlamydia: in vitro evaluation of RU 004. 35th International Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, WashingtonDC, 17–20 September, 1995, abstr F 165, p 142Google Scholar
  37. 37.
    Soejima R, Niki Y, Kishimoto T, Kimura M, Kubota Y (1994) Anti-chlamydial activities of newly developed fluoroquinolones and their clinical usefulness for Chlamydia respiratory infections. 5th International Symposium on New Quinolones, Singapore, 25–27 August, 1994, abstr 135, p 178Google Scholar
  38. 38.
    Hammerschlag MR, Hyman CL, Roblin PM (1992) In vitro activities of five quinolones against Chlamydia pneumoniae. Antimicrob Agents Chemother 36: 682–683PubMedGoogle Scholar
  39. 39.
    Orfila J, Haider F (1992) In vitro susceptibility of Chlamydia pneumoniae strain IOL 207 against temafloxacin compared to different other molecules. In: Adam D, Lode H, Rubinstein E (eds) Recent advances in chemotherapy. Proceedings of the 17th International Congress of Chemotherapy, Berlin, 23–26 June, 1991. Futuramed, Munich, pp 2344-2345Google Scholar
  40. 40.
    Roblin PM, Montalban G, Hammerschlag MR (1994) In vitro activities of OPC-17116, a new quinolone, ofloxacin and sparfloxacin against Chlamydia pneumoniae. Antimicrob Agents Chemother 38: 1402–1403PubMedGoogle Scholar
  41. 41.
    Nakata K, Okazaki Y, Hattori H, Nakamura S (1994) Protective effect of sparfloxacin in experimental pneumonia caused by Chlamydia pneumoniae in leukopenic mice. Antimicrob Agents Chemother 38: 1757–1762PubMedGoogle Scholar
  42. 42.
    Donati M, Rumpianesi F, Pavan G, Sambri V, Cevenini R (1997) In vitro activity of Bay12-8039 against Chlamydia trachomatis and Chlamydia pneumoniae. 37th International Conference on Antimicrobial Agents and Chemotherapy, Toronto, September 28-October 1, 1997, abstr F 142, p 170Google Scholar
  43. 43.
    Andrews JM, Wise R, Brenwald N (1993) In vitro activity of BAY3118. 6th European Congress of Clinical Microbiology and Infectious Diseases, Seville, 28–31 March, 1993, Abstr 4, p 71Google Scholar
  44. 44.
    Laitinen K, Alakarppa H, Laurila A, Leinonen M (1997) Animal models for Chlamydia pneumoniae infection. Scand J Infect Dis Suppl 104: 15–17PubMedGoogle Scholar
  45. 45.
    Kuo C-C, Jackson LA, Campbell LA, Grayston JT (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Res 8: 451–461Google Scholar
  46. 46.
    Yang ZP, Kuo C-C, Grayston JT (1995) Systematic dissemination of Chlamydia pneumoniae following intranasal inoculation of mice. J Infect Dis 171: 736–738PubMedCrossRefGoogle Scholar
  47. 47.
    Kobayashi H (1986) Clinical evaluation of ofloxacin in lower respiratory tract infections. Infection 14[Suppl 4]: S279–S282PubMedCrossRefGoogle Scholar
  48. 48.
    Lipsky BA, Tack KJ, Kuo C-C, Wang S-P (1990) Ofloxacin treatment of Chlamydia pneumoniae (strain TWAR) lower respiratory tract infections. Am J Med 89: 722–724PubMedCrossRefGoogle Scholar
  49. 49.
    Lode H, Garau J, Grassi C, Hosie G, Huchon G, Legakis N, Segev S, Wijnands G (1998) Treatment of community-acquired pneumonia: a randomized comparison of sparfloxacin, amoxycillin-clavulanic acid and erythromycin. Eur Respir J 8: 1999–2007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • G. Gialdroni Grassi

There are no affiliations available

Personalised recommendations