Skip to main content

Chlamydia pneumoniae: Culture Methods

  • Chapter
Chlamydia pneumoniae

Abstract

After T’ang et al. in Peking first successfully cultivated trachoma organisms in chick embryo in 1957, egg culture became a standard method of isolation and growth of Chlamydia trachomatis [1]. The researchers’ success was owed to the use of streptomycin, but not penicillin, for control of contamination. Since egg culture is not only cumbersome for cultivation but also for purification of organisms from yolk sacs, finding a sensitive cell culture method was vigorously pursued. In 1965, Gordon and Quan described a method for isolation of trachoma agents in McCoy cell culture using a flat-bottomed culture vial [2]. To enhance the sensitivity, McCoy cells were irradiated with γ-radiation and centrifugation was applied during the absorption period after specimens were inoculated to culture vials. The procedure was simplified by Ripa and Mårdh, who replaced γ-radiation with the use of cycloheximide [3]. In their method non-irradiated McCoy cells were used. To enhance the sensitivity of McCoy cells to C. trachomatis growth, cycloheximide was added to culture medium for cultivating infected cells. Cycloheximide inhibits host cell protein synthesis but does not affect chlamydial metabolism; thus, it reduces the competition for nutrients between host cells and parasites and enhances the growth of chlamydial organisms. This cell culture method was quickly adapted, and replaced egg culture for isolation and growth of C. trachomatis. Other modified methods have appeared and been used, such as the use of DEAE-dextrantreated HeLa 229 cells [4]. However, the crucial factors are centrifugation and cycloheximide. The use of 96-well microtiter plates for isolation of C. trachomatis was first introduced by McComb and Puzniak in 1974 [5] and later popularized by Yoder et al. in 1981 for handling large volumes of clinical specimens [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T’ang F, Chang H, Huang Y, Wang K (1951) Studies on the etiology of trachoma with special reference to isolation of the virus in chick embryo. Chin Med J 75: 429–447

    Google Scholar 

  2. Gordon FB, Quan AL (1965) Isolation of the trachoma agent in cell culture. Proc Soc Exp Biol Med 118: 354–359

    PubMed  CAS  Google Scholar 

  3. Ripa KT, Mårdh PA (1977) Cultivation of Chlamydia trachomatis in cycloheximidetreated McCoy cells. J Clin Microbiol 6: 328–331

    PubMed  CAS  Google Scholar 

  4. Kuo C-C, Wang S-P, Wentworth B, Grayston JT (1972) Primary isolation of TRIC organisms in HeLa 229 cells treated with DEAE-dextran. J Infect Dis 125: 665–668

    Article  PubMed  CAS  Google Scholar 

  5. McComb DE, Puzniak CI (1974) Micro cell culture method for isolation of Chlamydia trachomatis. Appl Microbiol 28: 727–729

    PubMed  CAS  Google Scholar 

  6. Yoder BL, Stamm WE, Koester CM, Alexander ER (1981) Microtest procedure for isolation of Chlamydia trachomatis. J Clin Microbiol 13: 1036–1039

    PubMed  CAS  Google Scholar 

  7. Kuo C-C, Chen H-H, Wang S-P, Grayston JT (1986) Identification of a new group of Chlamydia psittaci strains called TWAR. J Clin Microbiol 24: 1034–1037

    PubMed  CAS  Google Scholar 

  8. Cles LD, Stamm WE (1990) Use of HL cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol 28: 938–940

    PubMed  CAS  Google Scholar 

  9. Kuo C-C, Grayston JT (1990) A sensitive cell line, HL cells, for isolation and propagation of Chlamydia pneumoniae strain TWAR. J Infect Dis 162: 755–758

    Article  PubMed  CAS  Google Scholar 

  10. Wong KH, Skelton SK, Chan YK (1992) Efficient culture of Chlamydia pneumoniaewith cell lines derived from the human respiratory tract. J Clin Microbiol 30: 1625–1630

    PubMed  CAS  Google Scholar 

  11. Roblin PM, Dumornay W, Hammerschlag MR (1992) Use of Hep-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol 30: 1968–1971

    PubMed  CAS  Google Scholar 

  12. Kuo C-C, Wang S-P, Grayston JT (1977) Growth of trachoma organisms in HeLa 229 cell culture. In: Hobson D, Holmes KK (eds) Nongonococcal urethritis and related infections. American Society for Microbiology, Washington DC, pp 328–336

    Google Scholar 

  13. Cavallaro JJ, Monto AS (1972) HL cells, a sensitive line for the isolation and propagation of respiratory syncytial virus. Proc Soc Exp Biol Med 140: 507–510

    PubMed  CAS  Google Scholar 

  14. Moulder JW, Hatch TP, Kuo C-C, Schachter J, Storz J (1984) Chlamydia Jones, Rake and Sterns. In: Krieg NR (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 729–735

    Google Scholar 

  15. Wang S-P, Grayston JT (1991) Chlamydia pneumoniae elementary body antigenic reactivity with fluorescent antibody is destroyed by methanol. J Clin Microbiol 29: 1539–1541

    PubMed  CAS  Google Scholar 

  16. Maass M, Bartels C, Engel PM, Mamat U, Sievers HH (1998) Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease. J Am Coll Cardiol 31: 827–832

    Article  PubMed  CAS  Google Scholar 

  17. Grayston JT, Kuo C-C, Wang S-P, Altman J (1986) A new Chlamydia psittaci strain TWAR, isolated in acute respiratory tract infection. N Engl J Med 315: 161–168

    Article  PubMed  CAS  Google Scholar 

  18. Ekman M-R, Grayston JT, Visakorpi R, Kleemola M, Kuo C-C, Saikku P (1993) An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis 17: 420–425

    Article  PubMed  CAS  Google Scholar 

  19. Boman J, Allard A, Persson K, Lundborg M, Juto P, Wadell G (1997) Rapid diagnosis of respiratory Chlamydia pneumoniae infection by nested touchdown polymerase chain reaction compared with culture and antigen detection by EIA. J Infect Dis 175: 1523–1526

    Article  PubMed  CAS  Google Scholar 

  20. Kuo C-C, Grayston JT (1988) Factors affecting viability and growth in HeLa 229 cells of Chlamydia sp. strain TWAR. J Clin Microbiol 26: 812–815

    PubMed  CAS  Google Scholar 

  21. Maass M, Dalhoff K (1995) Transport and storage conditions for cultural recovery of Chlamydia pneumoniae. J Clin Microbiol 33: 1793–1796

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Kuo, CC. (1999). Chlamydia pneumoniae: Culture Methods. In: Allegra, L., Blasi, F. (eds) Chlamydia pneumoniae. Springer, Milano. https://doi.org/10.1007/978-88-470-2280-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2280-5_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0047-6

  • Online ISBN: 978-88-470-2280-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics