Chlamydia pneumoniae and Atherosclerosis: Mechanisms of Vascular Damage

  • J. C. Kaski
  • D. A. Smith


In 1908 Sir William Osier first proposed a causative role of infection in the pathogenesis of atherosclerosis [1]. The view that infectious processes may contribute to cardiovascular diseases did not gain wide support, as autopsy and epidemiological studies shifted the attention towards other mechanisms, some of which have now become established risk factors. In recent years, however, it has become apparent that recognised risk factors for coronary heart disease (CHD) do not fully explain the diversity of this disease, or why risk factor modifications have not reduced its incidence as much as has been predicted. Recent observations have prompted research into other potential and hitherto unrecognised influences in the causation of atherogenesis. Amongst these, chronic infection by Gram-negative bacteria and herpesviridae have been shown to have a major role. Current evidence indicates that chronic Chlamydia pneumoniae infection may play a causal role in atherogenesis.


Acute Coronary Syndrome Atheromatous Plaque Helsinki Heart Study Human Heat Shock Protein Increase Fibrinogen Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osler W (1908) Diseases of the arteries. In: Osler W (ed) Modern medicine: its practice and theory. Lea and Febiger, Philadelphia, pp 429–447Google Scholar
  2. 2.
    Saikku P (1992) The epidemiology and significance of Chlamydia pneumoniae. J Infect 39: 88–90Google Scholar
  3. 3.
    Grayston JT, Campbell LA, Kuo C-C et al (1990) A new respiratory pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 161: 618–625PubMedCrossRefGoogle Scholar
  4. 4.
    Saikku P, Mattila K, Nieminen S et al (1988) Serological evidence of an association of a novel Chlamydia TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2: 983–986PubMedCrossRefGoogle Scholar
  5. 5.
    Saikku P, Leinonen M, Tenkanen L et al (1992) Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Int Med 116: 273–278PubMedGoogle Scholar
  6. 6.
    Thom DH, Grayston JT, Siscovick DS et al (1992) Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease. JAMA 268: 68–72PubMedCrossRefGoogle Scholar
  7. 7.
    Melnick SL, Shahar E, Folsom AR et al (1993) Past infection by Chlamydia pneumoniae strain TWAR and asymptomatic carotid atherosclerosis. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am J Med 95: 499–504PubMedCrossRefGoogle Scholar
  8. 8.
    Thom DH, Wang SP, Grayston JT et al (1991) Chlamydia strain TWAR antibody and angiographically demonstrated coronary artery disease. Arterioscler Thromb 11: 547–551PubMedCrossRefGoogle Scholar
  9. 9.
    Mendall MA, Carrington D, Strachan DP et al (1995) Chlamydia pneumoniae: risk factors for seropositivity and association with coronary heart disease. J Infect 30: 121–128PubMedCrossRefGoogle Scholar
  10. 10.
    Haidl S, Juul-Moller S, Israelsson B et al (1992) Ischaemic heart disease and antibodies to Chlamydia pneumoniae (TWAR). Proc Eur Soc Chlam Res 2: 174 (abstract)Google Scholar
  11. 11.
    Cook PJ, Lip GY, Zarifis J et al (1996) Is Chlamydia pneumoniae infection associated with acute cardiac ischaemic syndromes? J Am Coll Cardiol 324[Suppl A]: 807–812Google Scholar
  12. 12.
    Patel P, Mendall MA, Carrington D et al (1995) Association of Helicobacter pylori and Chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors. BMJ 311: 711–714PubMedCrossRefGoogle Scholar
  13. 13.
    Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350: 430–436PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell LA, O’Brien ER, Cappuccio AL et al (1995) Detection of Chlamydia pneumoniae TWAR in human coronary atherectomy tissues. J Infect Dis 172: 585–588PubMedCrossRefGoogle Scholar
  15. 15.
    Toss H, Gnarpe J, Siegbahn A et al (1998) Increased fibrinogen levels are associated with persistent Chlamydia pneumoniae infection in unstable coronary artery disease. Eur Heart J 19: 570–577PubMedCrossRefGoogle Scholar
  16. 16.
    Cook PJ, Honeybourne D, Lip GY et al (1995) Chlamydia pneumoniae and acute arterial thrombotic disease. Circulation 95: 3148–3149Google Scholar
  17. 17.
    Aceti A, Mazzacurati G, Amendolea M et al (1996) Relation of C-reactive protein to cardiovascular risk factors: Helicobacter pylori and Chlamydia pneumoniae infections may account for most acute coronary syndromes. BMJ 313: 428–429PubMedCrossRefGoogle Scholar
  18. 18.
    Davidson M, Kuo C-C, Middaugh JP et al (1998) Confirmed previous infection with Chlamydia pneumoniae (TWAR) and its presence in early coronary atherosclerosis. Circulation 98: 628–633PubMedGoogle Scholar
  19. 19.
    Kuo C-C, Shor A, Campbell LA et al (1993) Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 167: 841–849PubMedCrossRefGoogle Scholar
  20. 20.
    Kuo C-C, Gown AM, Benditt EP, Grayston JT (1993) Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. Arterioscler Thromb 13: 1501–1504PubMedCrossRefGoogle Scholar
  21. 21.
    Kuo C-C, Grayston JT, Campbell LA et al (1995) Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). Proc Natl Acad Sci USA 92: 6911–6914PubMedCrossRefGoogle Scholar
  22. 22.
    Grayston JT, Kuo C-C, Coulson AS et al (1995) Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery. Circulation 92: 3397–3400PubMedGoogle Scholar
  23. 23.
    Ong G, Thomas BJ, Mansfield AO et al (1996) Detection and widespread distribution of Chlamydia pneumoniae in the vascular system and its possible implications. J Clin Pathol 49: 102–106PubMedCrossRefGoogle Scholar
  24. 24.
    Muhlestein JB, Hammond EH, Carlquist JF et al (1996) Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. J Am Coll Cardiol 27: 1555–1561PubMedCrossRefGoogle Scholar
  25. 25.
    Yang Z, Kuo C-C, Grayston JT (1995) Systemic dissemination of Chlamydia pneumoniae following intranasal innoculation in mice. J Infect Dis 171: 736–738PubMedCrossRefGoogle Scholar
  26. 26.
    Jackson LA, Campbell LA, Schmidt R et al (1997) Specificity of detection of Chlamydia pneumoniae in cardiovascular atheroma. Am J Pathol 150: 1785–1790PubMedGoogle Scholar
  27. 27.
    Gaydos CA, Summersgill JT, Sahney NN et al (1996) Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells and aortic artery smooth muscle cells. Infect Immunol 64: 1614–1620Google Scholar
  28. 28.
    Ramirez JA (1996) Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae Atherosclerosis Study Group. Ann Int Med 125: 979–982PubMedGoogle Scholar
  29. 29.
    Maass M, Bartels C, Engel PM et al (1998) Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease. J Am Coll Cardiol 31: 827–832PubMedCrossRefGoogle Scholar
  30. 30.
    Jackson LA, Campbell LA, Kuo C-C et al (1998) Isolation of Chlamydia pneumoniae from a carotid endarterectomy specimen. J Infect Dis 176: 292–295CrossRefGoogle Scholar
  31. 31.
    Moazed TC, Kuo C-C, Grayston JT et al (1997) Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Infect Dis 175: 883–890PubMedCrossRefGoogle Scholar
  32. 32.
    Fong IW, Chiu B, Viira E et al (1997) Rabbit model for Chlamydia pneumoniae infection. J Clin Microbiol 35: 48–52PubMedGoogle Scholar
  33. 33.
    Laitinen K, Laurila A, Pyhala L et al (1997) Chlamydia pneumoniae infection induces inflammatory changes in the aortas of rabbits. Infect Immun 65: 4825–4832Google Scholar
  34. 34.
    Muhlestein JB, Anderson JL, Hammond EH et al (1998) Infection with Chlamydia pneumoniae acelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation 97: 633–636PubMedGoogle Scholar
  35. 35.
    Chen L, Chester MR, Redwood S, Huang J, Leatham E, Kaski JC (1995) Angiographic stenosis progression and cardiac events in patients with stabilised unstable angina. Circulation 91: 2319–2324PubMedGoogle Scholar
  36. 36.
    Fuster V, Badimon L, Cohen M et al (1988) Insights into the pathogenesis of acute ischaemic syndromes. Circulation 77: 1213–1220PubMedCrossRefGoogle Scholar
  37. 37.
    Falk E (1989) Morphological features of unstable atherothrombotic plaques underlying acute coronary syndromes. Am J Cardiol 63: 114E–120EPubMedCrossRefGoogle Scholar
  38. 38.
    Moreno P, Falk E, Palacios I et al (1994) Macrophage infiltration in acute coronary syndromes. Circulation 90: 775–780PubMedGoogle Scholar
  39. 39.
    Annex B, Denning S, Channon K et al (1995) Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 91: 619–622PubMedGoogle Scholar
  40. 40.
    Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. Circulation 94: 2013–2020PubMedGoogle Scholar
  41. 41.
    Davies MJ (1998) Reactive oxygen species, metalloproteinases and plaque stability. Circulation 97: 2382–2383PubMedGoogle Scholar
  42. 42.
    Libby PJ (1995) The molecular bases of the acute coronary syndromes. Circulation 91: 2844–2850PubMedGoogle Scholar
  43. 43.
    Liuzzo G, Biasucci LM, Gallimore JR et al (1994) The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med 331: 417–424PubMedCrossRefGoogle Scholar
  44. 44.
    Dollery CM, McEwan JR, Henney A (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77: 863–868PubMedGoogle Scholar
  45. 45.
    Henney A, Wakeley P, Davies M et al (1991) Localisation of stromelysin gene expression in atherosclerotic plaques by in-situ hybridization. Proc Natl Acad Sci USA 88(18): 8154–8158PubMedCrossRefGoogle Scholar
  46. 46.
    Galis ZS, Sukhova GK, Lark MW et al (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493–2503PubMedCrossRefGoogle Scholar
  47. 47.
    Sernery GGN, Abbate R, Gori AM et al (1992) Transient intermittent lymphocyte activation is responsible for the instability of angina. Circulation 86: 790–797Google Scholar
  48. 48.
    Reidy MA, Bowyer DE (1978) Distortion of endothelial repair. The effect of hypercholesterolaemia on regulation of aortic endothelium following injury by endotoxin. A scanning microscopy study. Atherosclerosis 29: 459–466PubMedCrossRefGoogle Scholar
  49. 49.
    Pesonen E, Kaprio K, Rapola J et al (1981) Endothelial cell damage in piglet coronary artery after administration of E. coli endotoxin. A scanning and transmission electron microscopic study. Atherosclerosis 40: 65–73PubMedCrossRefGoogle Scholar
  50. 50.
    Hansson GK (1989) Immune mechanisms in atherosclerosis. Atherosclerosis 9: 567–588Google Scholar
  51. 51.
    Hajjar DP, Falcone DJ, Fabricant CG et al (1985) Altered cholesterol ester cycle is associated with lipid accumulation in herpes-infected arterial smooth muscle cells. J Biol Chem 260: 6124–6128PubMedGoogle Scholar
  52. 52.
    Leatham EW, Bath PM, Tooze JA et al (1995) Increased monocyte tissue factor expression in coronary disease. Br Heart J 73: 10–13PubMedCrossRefGoogle Scholar
  53. 53.
    Visser MR, Tracey PB, Vercellotti GM et al (1988) Enhancing thrombin generation and platelet binding on herpes simplex virus-infected endothelium. Proc Natl Acad Sci USA 85: 8227–8230PubMedCrossRefGoogle Scholar
  54. 54.
    Gupta S, Camm AJ (1997) Chlamydia pneumoniae and coronary heart disease: coincidence, association, or causation? BMJ 314: 1778–1779PubMedCrossRefGoogle Scholar
  55. 55.
    Holland MJ, Bailey RL, Hayes LJ et al (1998) Conjuctival scarring in trachoma is associated with depressed cell-mediated immune responses to Chlamydial antigens. J Infect Dis 168: 1528–1531CrossRefGoogle Scholar
  56. 56.
    Kaukoranta-Tolvanen SS, Teppo AM, Laitinen K et al (1996) Growth of Chlamydia pneumoniae in cultured human blood mononuclear cells and induction of a cytokine response. Microb Pathog 21: 215–221PubMedCrossRefGoogle Scholar
  57. 57.
    Patel P, Carrington D, Strachan DP et al (1994) Fibrinogen: a link between chronic infection and coronary heart disease. Lancet 343: 1634–1635PubMedCrossRefGoogle Scholar
  58. 58.
    Mendall MA, Patel P, Ballam L et al (1996) C-reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study. BMJ 312: 1061–1065PubMedCrossRefGoogle Scholar
  59. 59.
    Morrison RP, Belland RJ, Lyng K, Caldwell HD (1989) Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med 170: 1271–1283PubMedCrossRefGoogle Scholar
  60. 60.
    Birnie DH, Holme ER, McKay IC et al (1998) Association between antibodies to heat shock protein 65 and coronary atherosclerosis. Eur Heart J 19: 387–394PubMedCrossRefGoogle Scholar
  61. 61.
    Kol A, Sukhova GK, Lichtman AH, Libby P (1998) Chlamydial heat shock protein 60 localises in human atheroma and regulates macrophage tumour necrosis factor-α and matrix metalloproteinase expression. Circulation 98: 300–307PubMedGoogle Scholar
  62. 62.
    Xu Q, Dietrich H, Steiner HJ et al (1992) Induction of arteriosclerosis in normocholesterolaemic rabbits by immunisation with heat shock protein 65. Arterioscler Thromb 12: 789–799PubMedCrossRefGoogle Scholar
  63. 63.
    Kaski JC, Cox I (1998) Chronic infection and atherogenesis. Eur Heart J 19: 366–367PubMedGoogle Scholar
  64. 64.
    Fujita T, Fujimoto Y (1992) Formation and removal of active oxygen species and lipid peroxides in biological systems. Nippon Yakurigaku Zasshi 99: 381–389PubMedCrossRefGoogle Scholar
  65. 65.
    Steinbrecher UP, Parathasarathy S, Leake DS et al (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81: 3883–3887PubMedCrossRefGoogle Scholar
  66. 66.
    Morel DW, DiCorleto PE, Chisholm GM (1984) Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 4: 357–364PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • J. C. Kaski
  • D. A. Smith

There are no affiliations available

Personalised recommendations