Advertisement

Immunology of Chlamydia pneumoniae

  • M. Leinonen

Abstract

Chlamydiae are obligate intracellular parasites and at their simplest they can be regarded as highly specialised Gram-negative bacteria. Both the structural components of the chlamydial cell (virulence factors) and the host cell factors — i. e. how the host resists chlamydial infection — play a role in the immunological mechanisms associated with chlamydial infections. At the moment, not much is known about the immunology of Chlamydia pneumoniae infection, but evidently most immunological mechanisms associated with other chlamydial infections are also involved in C. pneumoniae infections.

Keywords

Chlamydia Trachomatis Chlamydial Infection Major Outer Membrane Protein Obligate Intracellular Parasite Host Cell Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaukoranta-Tolvanen SS, Laitinen K, Saikku P, Leinonen M (1994) Chlamydia pneumoniae multiplies in human endothelial cells in vitro. Microb Pathog 16: 313–319PubMedCrossRefGoogle Scholar
  2. 2.
    Godzik KL, O’Brien ER, Wang SK, Kuo C-C (1995) In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae. J Clin Microbiol 33: 2411–2414PubMedGoogle Scholar
  3. 3.
    Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC (1996) Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 64: 1614–1620PubMedGoogle Scholar
  4. 4.
    Kaukoranta-Tolvanen SS, Ronni T, Leinonen M, Saikku P, Laitinen K (1996) Expression of adhesion molecules on endothelial cells stimulated by Chlamydia pneumoniae. Microb Pathog 21: 407–411PubMedCrossRefGoogle Scholar
  5. 5.
    Kaukoranta-Tolvanen SS, Teppo AM, Laitinen K, Saikku P, Linnavuori K, Leinonen M (1996) Growth of Chlamydia pneumoniae in cultured human peripheral blood mononuclear cells and induction of a cytokine response. Microb Pathog 21: 215–221PubMedCrossRefGoogle Scholar
  6. 6.
    Fryer RH, Schwobe EP, Woods ML, Rodgers GM (1997) Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. J Invest Med 45: 168–174Google Scholar
  7. 7.
    Knoebel E, Vijayagopal P, Figueroa JE II, Martin DH (1997) In vitro infection of smooth muscle cells by Chlamydia pneumoniae. Infect Immun 65: 503–506PubMedGoogle Scholar
  8. 8.
    Moazed TC, Kuo C-C, Grayston JT, Campbell LA (1998) Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J Infect Dis 177: 1322–1325PubMedCrossRefGoogle Scholar
  9. 9.
    Boman J, Söderberg S, Forsberg J, Birgander LS, Allard A, Persson K, Jidell E, Kumlin U, Juto P, Waldenström A, Wadell G (1998) High prevalence of Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in patients with cardiovascular disease and in middle-aged blood donors. J Infect Dis 178: 274–277PubMedCrossRefGoogle Scholar
  10. 10.
    Kalayoglu MV, Byrne GI (1998) Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis 177: 725–729PubMedCrossRefGoogle Scholar
  11. 11.
    Leinonen M, Linnanmäki E, Mattila K, Nieminen MS, Valtonen V, Leirisalo-Repo M, Saikku P (1990) Circulating immune complexes containing chlamydial lipopolysaccharide in acute myocardial infarction. Microb Pathog 9: 67–73PubMedCrossRefGoogle Scholar
  12. 12.
    Linnanmäki E, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Valtonen V, Saikku P (1993) Presence of Chlamydia pneumoniae specific antibodies in circulating immune complexes in coronary heart disease. Circulation 87: 1130–1134PubMedGoogle Scholar
  13. 13.
    Saikku P, Leinonen M, Tenkanen L, Ekman MR, Linnanmäki E, Manninen V, Mänttäri M, Frick MH, Huttunen JK (1992) Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Int Med 116: 273–278PubMedGoogle Scholar
  14. 14.
    Nurminen M, Rietschel ET, Brade H (1985) Chemical characterisation of Chlamydia trachomatis lipopolysaccharide. Infect Immun 48: 573–575PubMedGoogle Scholar
  15. 15.
    Brade L, Schramek S, Schade U, Brade H (1986) Chemical, biological and immunochemical properties of Chlamydia psittaci lipopolysaccharide. Infect Immun 54: 568–574PubMedGoogle Scholar
  16. 16.
    Ekman MR, Leinonen M, Syrjälä H, Linnanmäki E, Kujala P, Saikku P (1993) Evaluation of serological methods in the diagnosis of Chlamydia pneumoniae during an epidemic in Finland. Eur J Clin Microbiol 12: 756–760CrossRefGoogle Scholar
  17. 17.
    Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Mäkelä PH, Huttunen J, Valtonen V (1988) Serologic evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet ii: 983–985CrossRefGoogle Scholar
  18. 18.
    Black CM, Johnson JE, Farshy CE, Brown TM, Berdal BP (1991) Antigenic variation among strains of Chlamydia pneumoniae. J Clin Microbiol 29: 1312–1316PubMedGoogle Scholar
  19. 19.
    Gaydos CA, Quinn TC, Bobo LD, Eiden JJ (1992) Similarity of Chlamydia pneumoniaestrains in the variable domain IV region of the major outer membrane protein gene. Infect Immun 60: 5319–5323PubMedGoogle Scholar
  20. 20.
    Jantos CA, Heck S, Roggendorf R, Sen-Gupta M, Hegemann JH (1997) Antigenic and molecular analyses of different Chlamydia pneumoniae strains. J Clin Microbiol 35: 620–623PubMedGoogle Scholar
  21. 21.
    Grayston JT, Campbell LA, Kuo C-C, Mordhorst CH, Saikku P, Thom D, Wang S-P (1990). A new respiratory tract pathogen: Chlamydia pneumoniae, strain TWAR. J Infect Dis 161: 618–625PubMedCrossRefGoogle Scholar
  22. 22.
    Ekman MR, Grayston JT, Visakorpi R, Kleemola M, Kuo C-C, Saikku P (1993) An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis 17: 420–425PubMedCrossRefGoogle Scholar
  23. 23.
    Campbell LA, Kuo C-C, Wang S-P, Grayston JT (1990) Serological response to Chlamydia pneumoniae infection. J Clin Microbiol 28: 1261–1264PubMedGoogle Scholar
  24. 24.
    Freidank, HM, Herr AS, Jacobs E (1993) Identifications of Chlamydia pneumoniae specific protein antigens in immunoblots. Eur J Clin Microbiol Infect Dis 12: 947–951PubMedCrossRefGoogle Scholar
  25. 25.
    Iijima Y, Miyashita N, Kishimoto T, Kanamoto Y, Soejima R, Matsumoto A (1994) Characterisation of Chlamydia pneumoniae species-specific proteins immunodominant in humans. J Clin Microbiol 32: 583–588PubMedGoogle Scholar
  26. 26.
    Puolakkainen M, Kuo C-C, Shor A, Wang S-P Grayston JT, Campbell LA (1993) Serological response to Chlamydia pneumoniae in adults with coronary arterial fatty streaks and fibrolipid plaques. J Clin Microbiol 31: 2212–2214PubMedGoogle Scholar
  27. 27.
    Maass M, Gieffers J (1997) Cardiovascular disease risk from prior Chlamydia pneumoniae infection can be related to certain antigens recognised in the immunoblot profile. J Infect 35: 171–176PubMedCrossRefGoogle Scholar
  28. 28.
    Rank RG, Söderberg LS, Barron AL (1985) Chronic chlamydial genital infections in congenitally athymic nude mice. Infect Immun 48: 847–849PubMedGoogle Scholar
  29. 29.
    Ramsey KH, Söderberg LS, Rank RG (1988) Resolution of chlamydial infection in B-cell deficient mice and immunity to reinfection. Infect Immun 56: 1320–1325PubMedGoogle Scholar
  30. 30.
    Ramsey KH, Rank RG (1991) Resolution of chlamydial genital infection with antigen specific T-cell lines. Infect Immun 59: 925–931PubMedGoogle Scholar
  31. 31.
    Stagg AJ, Elsley WA, Pickett MA, Ward ME, Knight SC (1993) Primary human T-cell responses to the major outer membrane protein of Chlamydia trachomatis. Immunology 79: 1–9PubMedGoogle Scholar
  32. 32.
    Kaufman SH (1988) CD8+ T lymphocytes in intracellular microbial infections. Immunol Today 9: 168–174CrossRefGoogle Scholar
  33. 33.
    Watkins NG, Hadlow WJ, Moos AB, Caldwell HD (1986) Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial conjunctivitis in guinea pigs. Proc Natl Acad Sci USA 83: 7480–7487PubMedCrossRefGoogle Scholar
  34. 34.
    Moller BR, Weström L, Ahrons S, Ripa T, Swensson L, Mecklenburg C, Henrikson H, Mårdh PA (1979) Chlamydia trachomatis infection of the Fallopian tubes. Br J Vener Dis 55: 422–429PubMedGoogle Scholar
  35. 35.
    Morrison RP, Belland RJ, Lyng K, Caldwell HD (1989) Chlamydial disease pathogenesis. The 57-kDa chlamydial hypersensitivity antigen is a stress response protein. J Exp Med 170: 1271–1283PubMedCrossRefGoogle Scholar
  36. 36.
    Wick G, Kleindienst R, Schett G, Amberger A, Xu Q (1995) Role of heat shock protein 60/65 in the pathogenesis of atherosclerosis. Int Arch Allergy Immunol 107: 130–131PubMedCrossRefGoogle Scholar
  37. 37.
    Kol A, Sukhova GK, Lichtman AH, Libby P (1998) Chlamydial heat shock protein 60 localises in human atheroma and regulates macrophage tumor necrosis factor α and matrix metalloproteinase expression. Circulation 98: 300–307PubMedGoogle Scholar
  38. 38.
    Laitinen K, Laurila A, Pyhälä L, Leinonen M, Saikku P (1997) Chlamydia pneumoniaeinfection induces inflammatory changes in the aortas of rabbits. Infect Immun 65: 4832–4835PubMedGoogle Scholar
  39. 39.
    Surcel HM, Syrjälä H, Leinonen M, Saikku P, Herva E (1993) Cell-mediated immunity to Chlamydia pneumoniae measured as lymphocyte blast transformation in vitro. Infect Immun 61: 2196–2199PubMedGoogle Scholar
  40. 40.
    Halme S, von Herzen L, Kaprio J, Koskenvuo M, Leinonen M, Saikku P, Surcel H-M (1998) Chlamydia pneumoniae-specific cell-mediated and humoral immunity in healthy people. Scand J Immunol 47: 517–520PubMedCrossRefGoogle Scholar
  41. 41.
    Halme S, Syrjälä H, Saikku P, Leinonen M, Airaksinen J, Surcel H-M (1997) Lymphocyte responses to chlamydial antigens in patients with coronary heart disease. Eur Heart J 18: 1095–1101PubMedCrossRefGoogle Scholar
  42. 42.
    Beatty WL, Belanger TL, Desai AA, Morrison RP, Byrne GI (1994) Tryptophan depletion as a mechanism of γ-interferon mediated chlamydial persistence. Infect Immun 62: 3705–3711PubMedGoogle Scholar
  43. 43.
    Mehta SJ, Miller RD, Ramirez JA, Summersgill JT (1998) Inhibition of Chlamydia pneumoniae replication in Hep-2 cells by interferon-γ: role of tryptophan catabolism. J Infect Dis 177: 1326–1331PubMedCrossRefGoogle Scholar
  44. 44.
    Holtman H, Shemer-Avni Y, Wessel K, Sarov I, Wallach D (1990) Inhibition of growth of Chlamydia trachomatis by tumour necrosis factor is accompanied by increased prostaglandin synthesis. Infect Immun 58: 3168–3172Google Scholar
  45. 45.
    Williams DM, Magee DM, Bonewald LF, Smith JG, Bleicker CA, Byrne GI, Schachter J (1990) A role in vivo for tumour necrosis factor alpha in host defence against Chlamydia trachomatis. Infect Immun 58: 1572–1576PubMedGoogle Scholar
  46. 46.
    Kawakami M, Pekala PH, Lance MD, Cerami A (1983) Lipoprotein lipase suppression in 3T3 L1 cells by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci USA 9: 912–916Google Scholar
  47. 47.
    Leinonen M (1993) Pathogenetic mechanisms and epidemiology of Chlamydia pneumoniae. Eur Heart J 14: 57–61PubMedCrossRefGoogle Scholar
  48. 48.
    Laurila A, Bloigu A, Näyhä S, Hassi J, Leinonen M, Saikku P (1997) Chronic Chlamydia pneumoniaeinfection is associated with a serum lipid profile known to be a risk factor for atherosclerosis. Arterioscler Thromb Vase Biol 17: 2910–2913CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • M. Leinonen

There are no affiliations available

Personalised recommendations