Advertisement

Metabolic Disorders and Electrolyte Derangement during Hypoperfusion Syndrome

  • F. Schiraldi
  • A. R. Derosa
  • F. Paladino
Conference paper

Abstract

Hypoperfusion could be defined as “a syndrome leading to widespread cellular hypoxia and vital organ dysfunction” [1], or “an inappropriate balance of substrate supply and demand at a cellular level” [2]; from a clinical point of view, whatever the cause, it is “a state in which reduction of effective tissue perfusion leads first to reversible, and then to irreversible cellular injury” [3]. Perhaps, after some intriguing insights about the subject, we should also include among the hypoperfusion syndromes any pathological O2 utilization at the cellular level, the so-called “dysoxia” [4, 5].

Keywords

Fractional Excretion Lactic Acidosis Central Venous Blood Electrolyte Derangement Vital Organ Dysfunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fink MP (1991) Shock: an overview. In: Rippe JM et al (eds) Intensive care medicine, Little, Brown, BostonGoogle Scholar
  2. 2.
    Cerra FB (1983) Shock. In: Burke JF (ed) Surgical physiology, Saunders, PhiladelphiaGoogle Scholar
  3. 3.
    Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328: 1471–1473PubMedCrossRefGoogle Scholar
  4. 4.
    Schlichtig R, Kramer D, Pinsky MR (1991) Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol 70: 169–178PubMedGoogle Scholar
  5. 5.
    Pinsky MR (1994) Beyond global oxygen supply-demand relations: in search of measures of dysoxia. Intensive Care Med 20: 1–3PubMedCrossRefGoogle Scholar
  6. 6.
    Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231(4735): 234–241PubMedCrossRefGoogle Scholar
  7. 7.
    Schlichtig R, Pinsky MR (1991) Defining the hypoxic threshold. Crit Care Med 19: 147–149PubMedCrossRefGoogle Scholar
  8. 8.
    Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761–C782PubMedGoogle Scholar
  9. 9.
    Gutierrez G, Hurtado FJ et al (1993) Net uptake of lactate by rabbit hindlimb during hypoxia. Am Rev Respir Dis 148: 1204–1209PubMedGoogle Scholar
  10. 10.
    Cohen RD (1988) Pathophysiology of lactic acidosis. In: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin, pp 40–43Google Scholar
  11. 11.
    Connett RJ, Honig CR et al (1990) Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol 68: 833–842PubMedGoogle Scholar
  12. 12.
    Gutierrez G, Wulf ME (1996) Lactic acidosis in sepsis: a commentary. Intensive Care Med 22: 6–15PubMedCrossRefGoogle Scholar
  13. 13.
    Mizock BA (1987) Controversies in lactic acidosis: implications in critically ill patients. JAMA 258: 497–501PubMedCrossRefGoogle Scholar
  14. 14.
    Vary TC, Siegel JH et al (1986) Effects of sepsis on activity of PDH complex in skeletal muscle and liver. Am J Physiol 250: E634–640PubMedGoogle Scholar
  15. 15.
    Stacpoole PW, Harman EM et al (1983) Treatment of lactic acidosis with dichloroacetate. N Engl J Med 309: 390–396PubMedCrossRefGoogle Scholar
  16. 16.
    Stacpoole PW, Wright EC et al (1992) A controlled clinical trial of DCA for treatment of lactic acidosis in adults. N Engl J Med 327: 1564–1569PubMedCrossRefGoogle Scholar
  17. 17.
    Mira JP, Fabre JE et al (1994) Lack of oxygen supply dependency in patients with severe sepsis. Chest 106: 1524–1531PubMedCrossRefGoogle Scholar
  18. 18.
    Astiz ME, Rackow EC, Kaufman B et al (1988) Relationship of oxygen delivery and mixed venous oxygenation to lactic acidosis in patients with sepsis and acute myocardial infarction. Crit Care Med 16: 655–658PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang H, Vincent JL (1993) Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148: 867–871PubMedCrossRefGoogle Scholar
  20. 20.
    Idris AH, Staples ED et al (1994) Effect of ventilation on acid-base balance and oxygenation in low blood-flow states. Crit Care Med 22: 1827–1834PubMedGoogle Scholar
  21. 21.
    Bircher NG (1992) Acidosis of cardiopulmonary resuscitation: carbon dioxide transport and anaerobios. Crit Care Med 20(9): 1203–1204PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen IL, Lumb PD (1991) Monitoring tissue oxygen perfusion: global or regional. Int Crit Care Dig 10(3): 56–59Google Scholar
  23. 23.
    Vexler ZS, Ayus JC et al (1994) Ischemic or hypoxic hypoxia exacerbates brain injury associated with metabolic encephalopathy in laboratory animals. J Clin Invest 93: 256–260PubMedCrossRefGoogle Scholar
  24. 24.
    Shoemaker WC, Peitzman AB et al (1996) Resuscitation from severe hemorrhage. Crit Care Med 24[Suppl]: S12–S23PubMedCrossRefGoogle Scholar
  25. 25.
    Benjamin E, Oropello JM et al (1994) Effects of acid-base correction on hemodynamics, oxygen dynamics, and resuscitability in severe canine hemorrhagic shock. Crit Care Med 22: 1616–1623PubMedGoogle Scholar
  26. 26.
    Ronco JJ, Fenwick JC, Tweeddale MG et al (1993) Identification of the critical oxygen delivery for anaerobic metabolism in critically ill and nonseptic humans. JAMA 270: 1724–1729PubMedCrossRefGoogle Scholar
  27. 27.
    Adrogue HJ, Rashad MN, Gorin AB et al (1989) Assessing acid-base status in circolatory failure. Differences between arterial and central venous blood. N Engl J Med 320: 1312–1318PubMedCrossRefGoogle Scholar
  28. 28.
    Vincent JL, Dufaye P et al (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11: 449–451PubMedCrossRefGoogle Scholar
  29. 29.
    Friedman G, Berlot G et al (1995) Combined measurements of blood lactate levels and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23: 1184–1193PubMedCrossRefGoogle Scholar
  30. 30.
    Iberti TJ, Leibowitz AB, Papadakos PJ et al (1990) Low sensitivity of the anion gap as a screen to detect hyperlactatemia in critically ill patients. Crit Care Med 18: 275–277PubMedCrossRefGoogle Scholar
  31. 31.
    Van der Linden P, Rausin I et al (1995) Detection of tissue hypoxia by arterio-venous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 80: 269–275PubMedGoogle Scholar
  32. 32.
    Mahutte CK, Jaffe MB et al (1991) Cardiac output from carbon dioxide production and arterial and venous oximetry. Crit Care Med 19: 1270–1277PubMedCrossRefGoogle Scholar
  33. 33.
    Arieff AI (1993) Managing metabolic acidosis: update on the sodium bicarbonate controversy. J Crit Illness 8: 224–229Google Scholar
  34. 34.
    Steiner RW (1984) Interpreting the fractional excretion of sodium. Am J Med 77: 699–702PubMedCrossRefGoogle Scholar
  35. 35.
    Laterre PF, Mallie JP (1993) The fractional excretion of chloride instead of sodium indicates hypovolemia: a comparative study of bedside assessment of true or effective intravascular depletion. Clin Intens Care 4: 112–115Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • F. Schiraldi
  • A. R. Derosa
  • F. Paladino

There are no affiliations available

Personalised recommendations