Tramadol - Acute Postoperative Pain Management

  • R. Likar
  • H. V. Schalk
  • R. Sittl
Conference paper


The central analgesic tramadol has become a drug of increasing interest due to its apparent success in the management of pain. It is formulated as a racemic mixture (± tramadol) with each enantiomer displaying different opioid-receptorbinding properties, monoaminergic re-uptake inhibition, and differences in their metabolic pathways [1, 2]. Like codeine, tramadol has a methyl group substitution on the phenolic moiety, which explains its weak affinity for opioid receptors [3]. Tramadol was initially reported to lack selectivity for μ-, k-, or δ-receptors [3], but in a more recent study it has been shown to be selective for the μ-receptor [2]. Furthermore, the M1 metabolite of tramadol, which is produced by O-demethylation [4], shows higher affinity for opioid receptors than the parent drug [3]. In a more recent study it has been shown that tramadol also inhibits norepinephrine and serotonin re-uptake in rat brain synaptosomes. Moreover, pretreatment with yohimbine and iadoxane (both α2-adrenoceptor antagonists) can significantly reduce the antinociceptive effect of intravenous tramadol [5, 6].


Opioid Receptor Visual Analogue Scale Score Postoperative Analgesia Brachial Plexus Block Bolus Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paar WD, Frankus P, Dengler HJ (1992) The metabolism of tramadol by human liver microsomes. Clin Invest 70: 708–710CrossRefGoogle Scholar
  2. 2.
    Raffa RB, Friderich E, Reimann W et al (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an atypical opioid analgesic. J Pharmacol Exper Ther 260: 275–285Google Scholar
  3. 3.
    Hennies HH, Friderich E, Schneider J (1988) Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arnzneimittel-Forschung/Drug Research 38: 877–880Google Scholar
  4. 4.
    Lintz W, Erlacin S, Francus E et al (1981) Metabolismus von Tramadol bei Mensch und Tier. Arzneimittel-Forschung/Drug Research 31: 1932–1943Google Scholar
  5. 5.
    Desmeules JA, Piguel V, Collart L et al (1996) Contribution of monoaminergic modulation to the analgesic effect of tramadol. Br J Clin Pharmacol 41: 7–12PubMedCrossRefGoogle Scholar
  6. 6.
    Codd EE, Shank R, Schupsky J et al (1995) Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesic. Structural determinants and role in antinociception. J Pharmacol Exper Ther 274: 1263–1270Google Scholar
  7. 7.
    Dayer P, CollartL, Desmeuler J (1994) Pharmacology of tramadol. Drugs 47[Suppl 1]: 3–7PubMedCrossRefGoogle Scholar
  8. 8.
    Lehmann K, Kratzenberg U, Schroeder-Bark B et al (1991) Postoperative patient-controlled analgesia with tramadol. Analgesic efficacy and minimum effective concentrations. Clin J Pain 6: 212–220CrossRefGoogle Scholar
  9. 9.
    Houmes RJM, Voets MA, Verkaaik A et al (1992) Efficacy and safety of tramadol versus morphine for moderate and severe postoperative pain with special regard to respiratory depression. AnesthAnalg 74: 510–514Google Scholar
  10. 10.
    Vickers MD, O’Flakerty D, Szekely S et al (1992) Tramadol: pain relief by an opioid without depression of respiration. Anaesthesia 47: 291–296PubMedCrossRefGoogle Scholar
  11. 11.
    Striebel MW, Hackerberger J (1992) Vergleich einer Tramadol/Metamizol-Infusion mit der Kombination Tramadol-Infusion plus Ibuprofen-Suppostorien zur postoperativen Schmerztherapie nach Hysterektomien. Anästhesist 41: 354–360Google Scholar
  12. 12.
    Tryba M, Zenz M (1992) Wirksamkeit und Nebenwirkungen von Opioiden und α2 Adrenorezeptor-agonisten in der Therapie postoperativer Schmerzen. Schmerz 6: 182–191PubMedCrossRefGoogle Scholar
  13. 13.
    Grießinger N, Rösch W, Schott G et al (1997) Tramadolinfusion zur Schmerztherapie nach gron Blaseneingriffen auf Kinderstationen J. Urologie (in press)Google Scholar
  14. 14.
    Lehmann K (1999) Tramadol for the management of acute pain. Drugs 47[Suppl I]: 19–32Google Scholar
  15. 15.
    Sunshine A, Olson NZ, Zigelboim I et al (1992) Analgesic oral efficacy of tramadol hydrochloride in postoperative pain. Clin Pharmacol Ther 51: 740–746PubMedCrossRefGoogle Scholar
  16. 16.
    Moroz BT, Ignatov YD, Kalinin VI (1991) Use of tramadol hydrochloride in therapeutic operative dentistry: clinical investigations. Cur Ther Res 49: 371–375Google Scholar
  17. 17.
    Kupers R, Callebaut V, Debois V et al (1995) Efficacy and safety of oral tramadol and pentazocine for postoperative pain following prolapsed intervertebral disc repair. Acta Anaesth Belg 46: 31–37PubMedGoogle Scholar
  18. 18.
    Butterworth JF, Strichartz GR (1996) Molecular mechanism of local anesthesic: A review. Anesthesiology 72: 711–734CrossRefGoogle Scholar
  19. 19.
    Kapral S, Gollmann G, Dumitrescu R et al (1997) Brachial plexus block: Tramadol as adjunct to mepivacaine. Anesth Analg (in press)Google Scholar
  20. 20.
    Likar R, Mathiaschitz K, Burtscher M et al (1996) Randomized, double blind, comparative study of morphine and tramadol administered intraarticularly for postoperative analgesia following arthroscopy surgery. Clin Drug Invest 10: 17–21Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • R. Likar
  • H. V. Schalk
  • R. Sittl

There are no affiliations available

Personalised recommendations