The Strategy of Sedation and Analgesia in ICU Patients

  • H. Burchardi
  • J. Rathgeber
Conference paper


During the last decade, there has been a fundamental change in our perception of the role of pain and anxiety in critically ill patients. The contribution of pain and anxiety to morbidity, and possibly even to mortality, is now appreciated [1]. This means, that the aim of analgo-sedation in intensive care is not only the relief of pain and anxiety in order to increase the comfort of the patient (and of the staff), but to reduce pain and stress-related complications in the postoperative period, after traumatic injuries, and in mechanically ventilated patients. Simultaneously, significant advances in the treatment of critically ill patients have become possible as a result of the availability of better analgesic and sedative agents.


Ventilatory Support Spontaneous Breathing Ventilatory Mode Bronchial Secretion Airway Pressure Release Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ledingham I, Watt I (1983) Influence of sedation on mortality in critically ill multiple trauma patients. Lancet 1: 1270PubMedCrossRefGoogle Scholar
  2. 2.
    Bion JF (1988) Sedation and analgesia in the intensive care unit. Hosp Update 14: 1272–1275Google Scholar
  3. 3.
    Bergbom-Engberg I, Haljamae H (1989) Assessment of patient’s experience of discomforts during respiratory therapy. Crit Care Med 17: 1068–1072PubMedCrossRefGoogle Scholar
  4. 4.
    Marcy TW, Marini JJ (1991) Inverse ratio ventilation in ARDS. Rationale and implementation. Chest 100: 494–504PubMedCrossRefGoogle Scholar
  5. 5.
    Bion JF, Ledingham I McA (1987) Sedation in intensive care-a postal study. Intensive Care Med 13: 215–216PubMedGoogle Scholar
  6. 6.
    Hörmann Ch, Baum M, Putensen Ch et al (1994) Biphasic Positive Airway Pressure (BIPAP)-a new mode of augmented ventilation. European J Anaesthesiol 11: 37–42Google Scholar
  7. 7.
    Downs JB, Stock MC (1987) Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med 15: 459–461PubMedCrossRefGoogle Scholar
  8. 8.
    Putensen C, Räsänen J, Lopez FA (1994) Ventilation-perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med 150: 101–108PubMedGoogle Scholar
  9. 9.
    Sydow M, Burchardi H, Ephraim E et al (1994) Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressures release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med 149: 1550–1556PubMedGoogle Scholar
  10. 10.
    Rathgeber J, Schorn B, Falk V et al (1997) Biphasic intermittent positive airway pressure (BIPAP) ventilation reduces duration of intubation and consumption of analgesics and sedatives following adult cardiac surgery. A prospective analysis in 596 patients. Eur J Anaesth 14 (in press)Google Scholar
  11. 11.
    Mangano DT (1991) Perioperative cardiac morbidity. Anesthesiology 72: 153–158CrossRefGoogle Scholar
  12. 12.
    Ramsay MAE, Savege TM, Simpson BRJ et al (1974) Controlled sedation with alphaxalone-alphadalone. Br Med J 2: 656–659PubMedCrossRefGoogle Scholar
  13. 13.
    Bodenham A, Shelly MP, Park GR (1988) The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clin Pharmacokinet 14: 347–355PubMedCrossRefGoogle Scholar
  14. 14.
    Byrne AJ, Yeoman PM, Mace P (1984) Accumulation of midazolam in patients receiving mechanical ventilation. Br Med J 289: 1309CrossRefGoogle Scholar
  15. 15.
    Dirksen MSC, Vree TB, Driessen JJ (1987) Clinical pharmacokinetics of long-term infusion of midazolam in critically ill patients-preliminary results. Anaesth Intensive Care 15: 440–443PubMedGoogle Scholar
  16. 16.
    Adams P, Gelman S, Reeves JG et al (1985) Midazolam pharmacodynamics and pharmacokinetics during acute hypovolemia. Anesthesiology 63: 140–144PubMedCrossRefGoogle Scholar
  17. 17.
    Bodenham A, Park GR (1989) Reversal of prolonged sedation using flumazenil in critically ill patients. Anaesthesia 44: 603–607PubMedCrossRefGoogle Scholar
  18. 18.
    Aitkenhead AR, Willatts SM, Parks GR et al (1989) Comparison of propofol and midazolam for sedation in critically ill patients. Lancet 2: 704–707PubMedCrossRefGoogle Scholar
  19. 19.
    Beller JP, Pottecher T, Lugnier A et al (1988) Prolonged sedation with propofol in ICU patients: Recovery and blood concentration changes during periodic interruptions in infusion. BrJ Anaesth 61: 583–588CrossRefGoogle Scholar
  20. 20.
    Newman LH, McDonald JC, Wallace PM et al (1987) Propofol infusion for sedation in intensive care. Anaesthesia 42: 929–933PubMedCrossRefGoogle Scholar
  21. 21.
    Delaunay L, Bonnet F, Liu N et al (1993) Clonidine comparably decreases the thermoregulatory thresholds for vasoconstriction and shivering in humans. Anesthesiology 79: 470–474PubMedCrossRefGoogle Scholar
  22. 22.
    Joris J, Banache M, Bonnet F et al (1993) Clonidine and ketanserin both are effective treatments for postanesthetic shivering. Anesthesiology 79: 532–539PubMedCrossRefGoogle Scholar
  23. 23.
    Jarvis DA, Duncan SR, Segal IS et al (1992) Ventilatory effects of clonidine alone and in the presence of alfentanil in human volunteers. Anesthesiology 76: 899–905PubMedCrossRefGoogle Scholar
  24. 24.
    Flacke JW, Bloor BC, Flacke WE et al (1987) Reduced narcotic requirements by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology 67: 11–19PubMedCrossRefGoogle Scholar
  25. 25.
    Osborne RJ, Joel SP, Slevin ML (1986) Morphine intoxication in renal failure: the role of morphine 6 glucoronide. Br Med J Clin Res Ed 292: 1548–1549PubMedCrossRefGoogle Scholar
  26. 26.
    Claybon LE, Hirsh RA (1980) Meperidine arrests postanesthesia shivering. Anesthesiology 53: 180–184CrossRefGoogle Scholar
  27. 27.
    Kurz M, Belani KG, Dessler DI et al (1993) Naloxone, meperidine, and shivering. Anesthesiology 79: 1193–1201PubMedCrossRefGoogle Scholar
  28. 28.
    Pauca AL, Savage RT, Simpson S et al (1984) Effect of pethidine, fentanyl, and morphine on post-operative shivering in man. Acta Anaesth Scand 28: 138–143PubMedCrossRefGoogle Scholar
  29. 29.
    Lehmann KA, Gerhard A, Horrichs-Haermeyer G et al (1991) Postoperative patient-controlled analgesia with sufentanil: Analgesic efficacy and minimum effective concentrations. Acta Anaesthesiol Scand 35: 221–226PubMedCrossRefGoogle Scholar
  30. 30.
    Maitre PO, Vozeh S, Heykants J (1987) Population pharmacokinetics of alfentanil: The average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology 62: 3–6CrossRefGoogle Scholar
  31. 31.
    White PF, Way WL, Trevor AJ (1982) Ketamine-its pharmacology and therapeutic uses. Anesthesiology 56: 119–123PubMedCrossRefGoogle Scholar
  32. 32.
    Freye E, Knüffermann V (1994) Keine Hemmung der intestinalen Motilität nach Ketamin-/Midazolamnarkose. Ein Vergleich zur Narkose mit Enfluran und Fentanyl/Midazolam. Anaesthesist 43: 87–91PubMedCrossRefGoogle Scholar
  33. 33.
    Grant IS, Nimmo WS, Clements JA (1981) Lack of effect of ketamine analgesia on gastric emptying in man. Br J Anaesth 53: 1321–1323PubMedCrossRefGoogle Scholar
  34. 34.
    Takahashi RN, Morato GS, Rae GA (1987) Effects of ketamine on nociception and gastrointestinal motility in mice are unaffected by naloxone. Gen Pharmacol 18: 201–203PubMedCrossRefGoogle Scholar
  35. 35.
    Wheeler AP (1993) Sedation, analgesia, and paralysis in the intensive care unit. Chest 104: 566–577PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • H. Burchardi
  • J. Rathgeber

There are no affiliations available

Personalised recommendations