Skip to main content

Abstract

Traditionally, lungs and kidneys are viewed as sole and principal organs being involved in systemic acid-base homeostasis in mammals, but this view is not entirely compatible with basic principles of chemistry (for review see [1–6]). Recent conceptual developments point to a role of the liver in pH homeostasis in addition to the well-established role of lungs and kidneys [1–6]. Hepatic and renal nitrogen metabolism are linked by an interorgan glutamine flux, which couples both renal ammoniagenesis and hepatic ureogenesis to systemic acid base regulation. A hepatic role in this interorgan team effort is based upon several features. (i) The presence of a quantitatively important and liver-specific pathway for irreversible removal of metabolically generated bicarbonate, i.e. urea synthesis. (ii) A structural-functional organization, which uncouples urea cycle flux control from the vital need to maintain ammonium homeostasis. (iii) A sensitive and complex control of bicarbonate disposal via hepatic ureogenesis by the extracellular acid-base status, suggestive for a feed-back control loop between the acid-base status and the rate of bicarbonate elimination, i.e. a hepatic bicarbonate-homeostatic response. (iv) Inhibition of amino acid uptake into the liver at the level of plasma membrane transport in acidosis, which may result in a shift of amino acid catabolism to extrahepatic tissues under these conditions. Some pathophysiological implications arising from the acid-base regulation of the liver are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Häussinger D (ed) (1988) pH homeostasis. Academic Press London

    Google Scholar 

  2. Atkinson DE, Camien MN (1982) The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr Top Cell Reg 21: 261–302

    CAS  Google Scholar 

  3. Häussinger D (1990) Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 267: 281–290

    PubMed  Google Scholar 

  4. Atkinson DE, Bourke E (1984) The role of ureogenesis in pH homeostasis. Trends Biochem Sci 9: 297–300

    Article  CAS  Google Scholar 

  5. Häussinger D, Gerok W, Sies H (1984) Hepatic role in pH regulation: role of the intercellular glutamine cycle. Trends Biochem Sci 9: 300–302

    Article  Google Scholar 

  6. Bourke E, Häussinger D (1992) pH homeostasis: the conceptional change. Contr Nephrol 100: 58–88

    CAS  Google Scholar 

  7. Häussinger D, Gerok W, Sies H (1986) The effect of urea synthesis on extracellular pH in isolated perfused rat liver. Biochem J 236: 261–265

    PubMed  Google Scholar 

  8. Häussinger D (1997) Liver and pH regulation. In: Bircher, Benhamou, McIntyre, Rodes (eds) Oxford textbook of hepatology

    Google Scholar 

  9. Häussinger D, Lenzen C, Sies H et al (1987) pH control of hepatic glutamine degradation: role of transport. Eur J Biochem 146: 483–488

    Google Scholar 

  10. Boon L, Blommaert PJE, Meijer AJ et al (1994) Acute acidosis inhibits liver amino acid transport: implications for regulation of acid-base balance. Contr Nephrol 110: 133–137

    CAS  Google Scholar 

  11. Christensen HN, Kilberg MS (1995) Hepatic amino acid transport primary to the urea cycle in regulation of biological neutrality. Nutr Rev 53: 74–76

    Article  PubMed  CAS  Google Scholar 

  12. Häussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133: 269–274

    Article  PubMed  Google Scholar 

  13. Traber PG, Chianale J, Gumucio JJ (1988) Physiologic significance and regulation of hepatocellular heterogeneity. Gastroenterology 95: 30–45

    Google Scholar 

  14. Moorman AFM, de Boer PAJ, Watford M et al (1994) Hepatic glutaminase is confined to part of the urea cycle domain in the adult rodent liver lobule. FEBS Lett 356: 76–80

    Article  PubMed  CAS  Google Scholar 

  15. McGivan JD (1989) Metabolism of glutamine and glutamate in liver: regulation and physiological significance. In: Kvamme E (ed) Glutamine and glutamate in mammals. CRC Press, Inc Boca Raton, pp 183–202

    Google Scholar 

  16. Curthoys NP, Watford M (1995) Regulation of glutaminase and glutamine transport. Ann Rev Nutr 15: 133–159

    Article  CAS  Google Scholar 

  17. Dölle W (1965) Der Säurebasenstoffwechsel bei Leberzirrhose. Hüthig Verlag, Heidelberg

    Google Scholar 

  18. Oster JR (1983) Acid-base homeostasis and liver disease. In: Epstein M (ed) The kidney in liver disease. Elsevier, New York, pp 147–182

    Google Scholar 

  19. Record CO, Iles RA, Cohen RD et al (1975) Acid-base and metabolic disturbances in fulminant hepatic failure. Gut 16: 144–149

    Article  PubMed  CAS  Google Scholar 

  20. Häussinger D, Steeb R, Gerok W (1991) Ammonium and bicarbonate homeostasis in chronic liver disease. Klin Wschr 68: 175–182

    Article  Google Scholar 

  21. Kaiser S, Gerok W, Häussinger D (1988) New concepts on the pathogenesis of hyperammonemia in chronic liver disease. Eur J Clin Invest 18: 535–542

    Article  PubMed  CAS  Google Scholar 

  22. Maier KP, Talke H, Gerok W (1978) Harnstoffzyklusenzyme und Harnstoffsynthese bei chronischen Leberkrankheiten. In: Wewalka F, Dragosics B (eds) Aminosäuren, Ammoniak und hepatische Enzephalopathie. G. Fischer, Stuttgart, pp 33–38

    Google Scholar 

  23. Häussinger D, Steeb R, Gerok W (1992) Metabolie alkalosis as a driving force for urea synthesis in liver disease: pathogenetic model and therapeutic implications. Clin Investig 70: 411–415

    Article  PubMed  Google Scholar 

  24. Häussinger D, Kaiser S, Stehle T et al (1986) Liver carbonic anhydrase and urea synthesis: the effects of diuretics. Biochem Pharmacol 35: 3317–3322

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Häussinger, D. (1998). The Role of the Liver in Acid-Base Regulation. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine - A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2278-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2278-2_39

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0007-0

  • Online ISBN: 978-88-470-2278-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics