Skip to main content
  • 222 Accesses

Abstract

Specific effects of hypothermia on the various organ systems of the adult have led to the use of clinical temperature ranges, where hypothermia is defined as mild (36.5–34°C), moderate (33.5–28°C), deep (27.5–17°C), or profound (16.5–4°C) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hitchcock CR, Strobel CJA, Haglin JJ et al (1962) Use of prolonged moderate hypothermia in postoperative care. Arch Surg 85: 549–556

    Article  PubMed  CAS  Google Scholar 

  2. Michenfelder JD, Milde JH (1992) The effect of profound levels of hypothermia (below 14°C) on canine cerebral metabolism. J Cereb Blood Flow Metab 12(5): 877–880

    Article  PubMed  CAS  Google Scholar 

  3. Michenfelder JD, Milde JH (1991) The relationship among canine brain temperature, metabolism and function during hypothermia. Anesthesiology 75: 130–136

    Article  PubMed  CAS  Google Scholar 

  4. Hayward JN, Baker MA (1968) Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am J Physiol 215: 389–403

    PubMed  CAS  Google Scholar 

  5. Mellergård P (1994) Monitoring of rectal, epidural, and intraventricular temperature in neurosurgical patients. Acta Neurochir Suppl Wien 60: 485–487

    PubMed  Google Scholar 

  6. Hossmann KA, Kleihues P (1973) Reversibility of ischemic brain damage. Arch Neurol 29(6): 375–384

    Article  PubMed  CAS  Google Scholar 

  7. Busto R, Dietrich WD, Globus MY et al (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729–738

    Article  PubMed  CAS  Google Scholar 

  8. Mariak Z, Lewko J, Luczaj J et al (1994) The relationship between directly measured human cerebral and tympanic temperatures during changes in brain temperatures. Eur J Appl Physiol 69: 545–549

    Article  CAS  Google Scholar 

  9. Whitby JD, Dunkin LJ (1971) Cerebral, oesophageal and nasopharyngeal temperatures. British Journal of Anaesthesia 43: 673–676

    Article  PubMed  CAS  Google Scholar 

  10. Serota HM, Gerard RW (1938) Localized temperature changes in the cat brain. J Neurophysiol 1: 115–124

    CAS  Google Scholar 

  11. Mellergård P, Nordstrom CH (1990) Epidural temperature and possible intracerebral temperature gradients in man. Br J Neurosurg 4(1): 31–38

    Article  PubMed  Google Scholar 

  12. Mellergård P, Nordstrom CH (1991) Intracerebral temperature in neurosurgical patients. Neurosurgery 28(5): 709–713

    Article  PubMed  Google Scholar 

  13. Sessler DI, McGuire J, Moayeri A et al (1991) Isoflurane-induced vasodilation minimally increases cutaneous heat loss. Anesthesiology 74(2): 226–232

    Article  PubMed  CAS  Google Scholar 

  14. Kurz A, Kurz M, Poeschl G et al (1993) Forced-air warming maintains intraoperative normothermia better than circulating-water mattresses. Anesth Analg 77(1): 89–95

    Article  PubMed  CAS  Google Scholar 

  15. Bacher A, Illievich UM, Fitzgerald R et al (1997) Changes in oxygenation variables during progressive hypothermia in anesthetized patients. J Neurosurg Anesth 9 (in press)

    Google Scholar 

  16. Hynson JM, Sessler DI, Moayeri A et al (1993) Absence of nonshivering thermogenesis in anesthetized adult humans. Anesthesiology 79(4): 695–703

    Article  PubMed  CAS  Google Scholar 

  17. Erdewyk JMV (1994) Blood gas temperature correction. In: Faust RJ (ed) Anesthesiology review, 2nd edn, Churchill Livingstone, pp 25-26

    Google Scholar 

  18. Verhaegen MJ, Todd MM, Hindman BJ et al (1993) Cerebral autoregulation during moderate hypothermia in rats. Stroke 24(3): 407–414

    Article  PubMed  CAS  Google Scholar 

  19. Michenfelder JD, Theye RA (1970) The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33: 430–439

    Article  PubMed  CAS  Google Scholar 

  20. Minamisawa H, Nordstrom CH, Smith ML et al (1990) The influence of mild body and brain hypothermia on ischemic brain damage. J Cereb Blood Flow Metab 10(3): 365–374

    Article  PubMed  CAS  Google Scholar 

  21. Welsh FA, Sims RE, Harris VA (1990) Mild hypothermia prevents ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 10(4): 557–563

    Article  PubMed  CAS  Google Scholar 

  22. Shiozaki T, Sugimoto H, Taneda M et al (1993) Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 79(3): 363–368

    Article  PubMed  CAS  Google Scholar 

  23. Marion DW, Obrist WD, Carlier PM et al (1993) The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 79(3): 354–362

    Article  PubMed  CAS  Google Scholar 

  24. Clifton GL, Allen S, Barrodale P et al (1993) A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma 10(3): 263–271

    Article  PubMed  CAS  Google Scholar 

  25. Busto R, Globus MY, Dietrich WD et al (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20(7): 904–910

    Article  PubMed  CAS  Google Scholar 

  26. Illievich UM, Zornow MH, Choi KT et al (1994) Effects of hypothermie metabolic suppression on hippocampal glutamate concentrations after transient global cerebral ischemia. Anesthesia & Analgesia 78: 905–911

    Article  CAS  Google Scholar 

  27. Katsura K, Minamisawa H, Ekholm A et al (1992) Changes of labile metabolites during anoxia in moderately hypo-and hyperthermic rats: correlation to membrane fluxes of K+. Brain Res 590(1-2): 6–12

    Article  PubMed  CAS  Google Scholar 

  28. Widmann R, Miyazawa T, Hossmann KA (1993) Protective effect of hypothermia on hippocampal injury after 30 minutes of forebrain ischemia in rats is mediated by postischemic recovery of protein synthesis. J Neurochem 61(1): 200–209

    Article  PubMed  CAS  Google Scholar 

  29. Cardell M, Boris MF, Wieloch T (1991) Hypothermia prevents the ischemia-induced translocation and inhibition of protein kinase C in the rat striatum. J Neurochem 57(5): 1814–1817

    Article  PubMed  CAS  Google Scholar 

  30. Lei B, Tan X, Cai H et al (1994) Effect of moderate hypothermia on lipid peroxidation in canine brain tissue after cardiac arrest and resuscitation. Stroke 25(1): 147–152

    Article  PubMed  CAS  Google Scholar 

  31. Edwards AD, Yue X, Squier MV et al (1995) Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia. Biochem Biophys Res Commun 217(3): 1193–1199

    Article  PubMed  CAS  Google Scholar 

  32. Jiang JY, Lyeth BG, Kapasi MZ et al (1992) Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat. Acta Neuropathol Berl 84(5): 495–500

    Article  PubMed  CAS  Google Scholar 

  33. Marion DW, Penrod LE, Kelsey SF et al (1997) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336(8): 540–546

    Article  PubMed  CAS  Google Scholar 

  34. Harari A, Regnier B, Rapin M et al (1975) Haemodynamic study of prolonged deep accidental hypothermia. Eur J Intensive Care Med 1(2): 65–70

    Article  PubMed  CAS  Google Scholar 

  35. Gould L, Gopalaswamy C, Kim BS et al (1985) The Osborn wave in hypothermia. Angiology 36(2): 125–129

    Article  PubMed  CAS  Google Scholar 

  36. Okada M (1984) The cardiac rhythm in accidental hypothermia. J Electrocardiol 17(2): 123–128

    Article  PubMed  CAS  Google Scholar 

  37. Chen RY, Chien S (1978) Hemodynamic functions and blood viscosity in surface hypothermia. Am J Physiol 235(2): H136–H143

    PubMed  CAS  Google Scholar 

  38. Morray JP, Pavlin EG (1990) Oxygen delivery and consumption during hypothermia and rewarming in the dog. Anesthesiology 72(3): 510–516

    Article  PubMed  CAS  Google Scholar 

  39. Wilson JT, Miller WR (1958) Blood studies in the hypothermic dog. Surgery 43: 979–989

    Google Scholar 

  40. Resnick DK, Marion DW, Darby JM (1994) The effect of hypothermia on the incidence of delayed traumatic intracerebral hemorrhage. Neurosurgery 34(2): 252–255

    Article  PubMed  CAS  Google Scholar 

  41. Oss Cv, Absolom D, Moore L et al (1980) Effect of temperature on chemotaxis, phagocytic engulfment, digestion, and O2 consumption of human polymorphonuclear leucocytes. J Reticuloendothelial Soc 27: 561–565

    Google Scholar 

  42. Kurz A, Sessler DI, Lenhardt R (1996) Perioperative normothermia to reduce the incidence of surgical wound infection and shorten hospitalization. N Engl J Med 334: 1209–1215

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Spiss, C.K., Illievich, U.M. (1998). Hypothermia for Neuroprotection. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine - A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2278-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2278-2_34

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0007-0

  • Online ISBN: 978-88-470-2278-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics