Cerebral Edema in Brain Ischemia and Trauma

  • Y. Shapira
  • A. A. Artru
Conference paper


Cerebral edema is brain swelling caused by accumulation of water and electrolytes. It tends to affect white matter more than the gray and has been classified as cytotoxic and/or vasogenic [1].


Head Injury Brain Edema Cerebral Edema Hypertonic Saline Cerebral Blood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klazo I (1967) Neuropathological aspects of brain oedema. J Neuropath Exp Neurol 26: 1–14CrossRefGoogle Scholar
  2. 2.
    Klazo I (1985) Brain edema following brain ischemia and the influence of therapy. Br J Anaesth 57: 18–22CrossRefGoogle Scholar
  3. 3.
    Klazo I (1987) Pathophysiologic aspects of brain edema. Acta Neuropathol 72: 236–239CrossRefGoogle Scholar
  4. 4.
    Fenstermacher JD (1984) Volume regulation of the central nervous system. In: Staub NC, Taylor AE (eds) Edema. Raven Press, New York, pp 383–404Google Scholar
  5. 5.
    Choi WD (1988) Calcium mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469PubMedCrossRefGoogle Scholar
  6. 6.
    Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443PubMedCrossRefGoogle Scholar
  7. 7.
    Baethmann A, Maier-Hauff K, Kempski O et al (1988) Mediators of brain edema and secondary brain damage. Crit Care Med 16: 972–978PubMedCrossRefGoogle Scholar
  8. 8.
    Rasmussen H (1986) The calcium messenger system. N Engl J Med 314: 1094–1101PubMedCrossRefGoogle Scholar
  9. 9.
    Shapira Y, Yadid G, Cotev S et al (1989) Accumulation of calcium in the brain following head trauma. Neurol Res 11: 169–172PubMedGoogle Scholar
  10. 10.
    Weed LH, McKibben PS (1919) Experimental alteration of brain bulk. Am J Physiol 48: 531–558Google Scholar
  11. 11.
    McComist PB, Bodley PO (1971) Head injury. In: McComist PB, Bodley PO (eds) Anesthesia for neurosurgical surgery. Lloyd-Luke, London, pp 304–328Google Scholar
  12. 12.
    Shenkin HA, Bezier HS, Bowzarth WF (1976) Restriction of fluids intake: rational management of the neurosurgical patient. J Neurosurg 45: 432–436PubMedCrossRefGoogle Scholar
  13. 13.
    Safar P, Bircher NG (1988) Cardiopulmonary cerebral resuscitation. WB Saunders, in association with Laerdal Medical, Philadelphia, pp 248Google Scholar
  14. 14.
    Becker PD, Gamer S (1985) Intensive management of head injury. In: Wilkins RH, Ren-gachary SS (eds) Neurosurgery. McGraw-Hill, New York, pp 1593–1600Google Scholar
  15. 15.
    Grady MS, Lam AM (1995) Management of acute head injury: Initial resuscitation. In: Lam AM (ed) Anesthetic management of acute head injury. McGraw-Hill, New York, pp 87–100Google Scholar
  16. 16.
    Miller JD (1985) Head injury and brain ischemia-implications for therapy. Br J Anaesth 57: 120–130PubMedCrossRefGoogle Scholar
  17. 17.
    Drummond JC (1992) Fluid management in neurosurgical patients. ASA Annual Refresher Course Lectures 116Google Scholar
  18. 18.
    Shohami E, Shapira Y, Sidi A et al (1987) Head injury induced increased prostaglandin synthesis in rat brain. J Cereb Blood Flow Metab 7: 58–63PubMedCrossRefGoogle Scholar
  19. 19.
    Wisner W, Busche F, Strum J et al (1989) Traumatic shock and head injury: effects of fluid resuscitation on the brain. J Surg Res 46: 49–59PubMedCrossRefGoogle Scholar
  20. 20.
    Tommasino C, Todd MM, Shapiro HM The effect of fluid resuscitation on brain water content. Anesthesiology 57: A109Google Scholar
  21. 21.
    Warner DS, Boehland LA (1988) Effects of iso-osmolal intravenous fluid therapy on post-ischemic brain water content in the rat. Anesthesiology 68: 86–91PubMedCrossRefGoogle Scholar
  22. 22.
    Poole GV, Johnson JC, Prough DS et al (1986) Cerebral hemodynamics after hemorrhagic shock: effects of the type of resuscitation fluid. Crit Care Med 14: 629–633PubMedCrossRefGoogle Scholar
  23. 23.
    Zornow MH, Todd MM, Moore SS (1987) The acute cerebral effects of changes in plasma osmolality and oncotic pressure. Anesthesiology 67: 936–941PubMedCrossRefGoogle Scholar
  24. 24.
    Tommasino C, Moore S, Todd MM (1988) Cerebral effects of isovolemic hemodilution with crystalloid or colloid solutions. Crit Care Med 16: 862–868PubMedCrossRefGoogle Scholar
  25. 25.
    Todd MM, Tommasino C, Moore S et al (1984) The effect of hypertonic saline on intracranial pressure, cerebral blood flow and brain water content. Anesthesiology 61: A123CrossRefGoogle Scholar
  26. 26.
    Foxworthy JC, Artru AA (1990) Cerebrospinal fluid dynamics and brain tissue composition following intravenous infusion of hypertonic saline in anesthetized rabbits. J Neurosurg Anesth 2: 256–265CrossRefGoogle Scholar
  27. 27.
    Kuchiwaki H, Furuse M, Gouda T et al (1984) Studies on changes in tissue water constitution and focal brain tissue pressure in experimental cerebral infarction. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum Press, New York, London, pp 459Google Scholar
  28. 28.
    Kuroiwa T, Cahn R, Juhler M et al (1985) Role of extracellular proteins in the dynamics of vasogenic brain edema. Acta Neuropathol 66: 3–11PubMedCrossRefGoogle Scholar
  29. 29.
    Shapira Y, Setton D, Artru AA et al (1993) Blood brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77: 141–148PubMedGoogle Scholar
  30. 30.
    Shapira Y, Artru AA, Cotev S et al (1992) Brain edema and neurological status following head trauma in the rat; no effect from large volumes of isotonic or hypertonic iv fluids, with or without glucose. Anesthesiology 77: 79–85PubMedCrossRefGoogle Scholar
  31. 31.
    Shapira Y, Artru AA, Qassam N et al (1995) Brain edema and neurological status with rapid infusion of 0.9% saline or 5% dextrose following head trauma. J Neurosurg Anesth 7: 17–25CrossRefGoogle Scholar
  32. 32.
    Feldman Z, Zachari S, Reichental E et al (1995) Brain edema and neurological status with rapid infusion of Lactated Ringer’s solution or 5% dextrose following head trauma. J Neurosurg 83: 1060–1066PubMedCrossRefGoogle Scholar
  33. 33.
    Gurevich B, Talmor D, Artru AA et al (1997) Cerebral infarct volume and neurological outcome following rapid infusion of 0.45% saline or 5% dextrose in 0.9% saline after close head trauma in the rat. Anesth Analg 84: 554–559PubMedGoogle Scholar
  34. 34.
    Lam AM, Mayberg TS (1995) Anesthetic management of patients with traumatic head injury. In: Lam AM (ed) Anesthetic management of acute head injury. McGraw-Hill, New York, pp 181–221Google Scholar
  35. 35.
    Lam AM, Winn HR, Cullen BF et al (1991) Hyperglycemia and neurological outcome in patients with head injury. J Neurosurg 75: 545PubMedCrossRefGoogle Scholar
  36. 36.
    Zornow MH, Scheller MS (1994) Introperative fluid management during craniotomy. In: Cottrell JE, Smith DS (eds) Anesthesia and neurosurgery. Mosby-Year Book, St. Louis, pp 247–259Google Scholar
  37. 37.
    Reed DJ, Woodbury DM (1962) Effect of hypertonic urea on cerebrospinal fluid pressure and brain volume. J Physiol 164: 252–264PubMedGoogle Scholar
  38. 38.
    McManus ML, Strange K (1993) Acute volume regulation of brain cells in response to hypertonic challenge. Anesthesiology 78: 1132–1137PubMedCrossRefGoogle Scholar
  39. 39.
    Sahar A, Tsipstein E (1978) Effects of mannitol and furosemide on the rate of formation of cerebrospinal fluid. Exp Neurol 60: 584–591PubMedCrossRefGoogle Scholar
  40. 40.
    Takagi H, Saitoh T, Kitahara T et al (1982) The mechanism of the ICP reducing effect of mannitol. The 5th international Symposium on intracranial pressureGoogle Scholar
  41. 41.
    Donato T, Shapira Y, Artru AA et al (1994) Effect of mannitol on cerebrospinal fluid dynamics and brain tissue edema. Anesth Analg 78: 58–66PubMedCrossRefGoogle Scholar
  42. 42.
    Ravussin P, Archer DP, Meyer E et al (1985) The effect of rapid infusion of saline and mannitol on cerebral blood volume and intracranial pressure in dogs. Can Anaesth Soc J 32: 506–515PubMedCrossRefGoogle Scholar
  43. 43.
    Abou-Madi M, Trop D, Abou-Madi N et al (1987) Does a bolus of mannitol initially aggravate intracranial hypertension? A study at various PaCO2. Br J Med 59: 630–639Google Scholar
  44. 44.
    Cottrell JE, Robstelli A, Post K et al (1977) Furosemide and mannitol induced changes in intracranial pressure and serum osmolality and electrolytes. Anesthesiology 47: 28–30PubMedCrossRefGoogle Scholar
  45. 45.
    Marshall LF, Smith RW, Rauscher LA et al (1978) Mannitol requirements in brain injured patients. J Neurosurg 48: 169–172PubMedCrossRefGoogle Scholar
  46. 46.
    McGraw CP, Alexander E, Howard G (1978) Effect of dose and dose schedule on the response of intracranial pressure to mannitol. Surg Neurol 10: 127–130PubMedGoogle Scholar
  47. 47.
    Roberts PA, Pollay M, Engles C et al (1987) Effect on intracranial pressure of furosemide combined with varying doses and administration rates of mannitol. J Neurosurg 66: 440–446PubMedCrossRefGoogle Scholar
  48. 48.
    Simon RP, Swan JH, Griffiths T et al (1990) Blockade of Nmethyl D aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852CrossRefGoogle Scholar
  49. 49.
    Ozyurt E, Graham DI, Woodruff GN et al (1988) Protective effect of glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8: 138–143PubMedCrossRefGoogle Scholar
  50. 50.
    Faden AI, Demediuk P, Panter SS et al (1989) The role of exitatory amino acids and NMDA receptors in traumatic head injury. Science 244: 798–800PubMedCrossRefGoogle Scholar
  51. 51.
    Shapira Y, Yadid G, Cotev S et al (1990) Protective effect of MK-801 in experimental head injury. J Neurotrauma 7: 131–139PubMedCrossRefGoogle Scholar
  52. 52.
    Shohami E, Novikov M, Mechoulam R (1993) A nonpsychotropic cannabiboid, HU-211, has cerebroprotective effects after closed head injury in rat. J Neurotrauma 10: 109–119PubMedCrossRefGoogle Scholar
  53. 53.
    Stevens MK, Yaksh TL (1990) Systemic studies on the NMDA receptor antagonist MK-801 on cerebral blood flow and responsivity, EEG, and blood brain barrier following complete reversible cerebral ischemia. J Cereb Blood Flow Metab 10: 77–85PubMedCrossRefGoogle Scholar
  54. 54.
    Baethmann A, Maierhauff K, Schurer L et al (1989) Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg 70: 578–591PubMedCrossRefGoogle Scholar
  55. 55.
    Feldman Z, Gurevitch B, Artru AA et al (1996) Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 85: 131–137PubMedCrossRefGoogle Scholar
  56. 56.
    McIntosh TK, Soares H, Hays RL et al (1988) The N-methyl-D-aspartate receptor antagonist MK-801 prevents edema and improves outcome after experimental brain injury in rats. In: Hoff and Betz (eds) Seventh international symposium on ICP and brain injury, Ann Arbor, MI, University of Michigan Press, pp 199Google Scholar
  57. 57.
    Kamiya T, Katayama Y, Kashiwagi F et al (1993) The role of bradykinin in mediating ischemic brain edema in rats. Stroke 24: 571–576PubMedCrossRefGoogle Scholar
  58. 58.
    Artru AA, Katz RA (1989) Cerebral blood volume and CSF pressure following administration of ketamine in dogs: modification by pre-or posttreatment with hypocapnia or diazepam. J Neurosurg Anesth 1: 8–15CrossRefGoogle Scholar
  59. 59.
    Smith AL, Marque JJ (1976) Anesthetics and cerebral edema. Anesthesiology 45: 64–72PubMedCrossRefGoogle Scholar
  60. 60.
    Shapira Y, Gurevich B, Artru AA et al (1997) The influence of closed head injury on isoflurane MAC in the rat. J Neurosurg Anesth 9: 51–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • Y. Shapira
  • A. A. Artru

There are no affiliations available

Personalised recommendations