Advertisement

Role of Nitric Oxide in Septic Shock

  • H. Zhang
  • J. L. Vincent
Conference paper

Abstract

Septic shock, a major clinical problem with mortality rates of up to 70%, is characterized by systemic hypotension, impaired tissue O2 extraction capabilities and myocardial depression. Nitric oxide (NO), a paracrine-acting gas enzymatically synthesized from L-arginine, is an important biologic mediator that has been implicated in the pathophysiologic alterations of septic shock. Endotoxin and cytokines such as tumor necrosis factor (TNF) or interferon-γ can induce the inducible form of NO synthase (NOS) in various cells, including macrophages, endothelial cells, vascular smooth muscle cells, or even myocardial cells. The resulting overproduction of inducible NO (iNOS) may exert deleterious hemodynamic effects including arterial hypotension [1]. vascular hyporeactivity and myocardial depression [2] and or directly induce cellular damage [3].

Keywords

Nitric Oxide Nitric Oxide Septic Shock Methylene Blue Nitric Oxide Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cobb JP, Natanson C, Hoffman WD et al (1992) Nw-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med 176: 1175–1182PubMedCrossRefGoogle Scholar
  2. 2.
    Brady AJ, Poole-Wilson PA, Harding SE et al (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963–H1966PubMedGoogle Scholar
  3. 3.
    Evans T, Carpenter A, Kinderman H (1993) Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 41: 77–81PubMedGoogle Scholar
  4. 4.
    Salvemini D, Korbut R, Anggard E et al (1990) Immediate release of nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 87: 2593–2697PubMedCrossRefGoogle Scholar
  5. 5.
    Wright CE, Rees DD, Moncada S (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res 26: 48–57PubMedCrossRefGoogle Scholar
  6. 6.
    Nakae H, Endo S, Inada K et al (1996) Nitrite/nitrate (Nox) and type II phospholipase A2, leukotriene B4, and platelet-activating factor levels in patients with septic shock. Res Commun Molecul Pathol Pharmacol 92: 131–139Google Scholar
  7. 7.
    Endo S, Inada K, Nakae H et al (1996) Nitrite/nitrate (Nox) and cytokine levels in patients with septic shock. Res Commun Molecul Pathol Pharmacol 91: 347–356Google Scholar
  8. 8.
    Gomez-Jimenez J, Salgado A, Mourelle M et al (1995) L-arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med 23: 253–258PubMedCrossRefGoogle Scholar
  9. 9.
    Wong HR, Carcillo JA, Burckart G et al (1996) Nitric oxide production in critically ill patients. Arch Dis Child 74: 482–489PubMedCrossRefGoogle Scholar
  10. 10.
    Mitaka C, Hirata Y, Ichikawa K et al (1995) Effects of nitric oxide synthase inhibitor on hemodynamic change and O2 delivery in septic dogs. Am J Physiol 268: H2017–H2023PubMedGoogle Scholar
  11. 11.
    Mulder MF, Van Lambalgen AA, Huisman E et al (1994) Protective role of NO in the regional hemodynamic changes during acute endotoxemia in rats. Am J Physiol 266: H1558–H1564PubMedGoogle Scholar
  12. 12.
    Laniyonu AA, Coston AF, Klabunde RE (1997) Endotoxin-induced microvascular leakage is prevented by a PAF antagonist and NO synthase inhibitor. Shock 7: 49–54PubMedCrossRefGoogle Scholar
  13. 13.
    Spain DA, Wilson MA, Garrison RN (1994) Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion. Surgery 116: 322–331PubMedGoogle Scholar
  14. 14.
    Spain DA, Wilson MA, Bar-Natan MF et al (1994) Nitric oxide synthase inhibition aggravates intestinal microvascular vasoconstriction and hypoperfusion of bacteremia. J Trauma 36: 720–725PubMedCrossRefGoogle Scholar
  15. 15.
    Statman R, Cheng W, Cunningham JN et al (1994) Nitric oxide inhibition in the treatment of the sepsis syndrome is detrimental to tissue oxygenation. J Surg Res 57: 93–98PubMedCrossRefGoogle Scholar
  16. 16.
    Cobb JP, Natanson C, Quezado ZMN et al (1995) Differential hemodynamic effects of L-NMMA in endotoxemic and normal dogs. Am J Physiol 268: H1634–H1642PubMedGoogle Scholar
  17. 17.
    Robertson FM, Offner PJ, Ciceri DP et al (1994) Detrimental hemodynamic effects of nitric oxide synthase inhibition in septic shock. Arch Surg 129: 149–156PubMedCrossRefGoogle Scholar
  18. 18.
    Gardiner SM, Kemp PA, Bennett MT (1995) Cardiac and regional haemodynamics, inducible nitric oxide synthase (NOS) activity, and the effects of NOS inhibitors in conscious, endotoxaemic rats. Br J Pharmacol 116: 2005–2016PubMedGoogle Scholar
  19. 19.
    Zhang H, Rogiers P, Smail N et al (1997) Effects of nitric oxide on regional blood flow and oxygen extraction capabilities in endotoxic shock. J Appl Physiol (in press)Google Scholar
  20. 20.
    Finkel MS, Oddis CV, Jacob TD et al (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science Wash. DC 257:387–389CrossRefGoogle Scholar
  21. 21.
    Decking UKM, Flesche CW, Gödecke A et al (1995) Endotoxin-induced contractile dysfunction in guinea pig hearts is not mediated by nitric oxide. Am J Physiol 268: H2460–H2465PubMedGoogle Scholar
  22. 22.
    Klabunde RE, Coston AF (1995) Nitric oxide synthase inhibition does not prevent cardiac depression in endotoxic shock. Shock 3: 73–78PubMedGoogle Scholar
  23. 23.
    Vincent J-L, Colice G, Grover R et al (1995) The effects of 546C88 on left ventricular performance in patients with septic shock. (Abstract) Intensive Care Med 21: S20Google Scholar
  24. 24.
    Meng X, Ao L, Brown JM et al (1997) Nitric oxide synthase is not involved in cardiac contractile dysfunction in a rat model of endotoxemia without shock. Shock 7: 111–118PubMedCrossRefGoogle Scholar
  25. 25.
    Keller RS, Jones JJ, Kim KF et al (1995) Endotoxin-induced myocardial dysfunction: is there a role for nitric oxide? Shock 4: 338–344PubMedCrossRefGoogle Scholar
  26. 26.
    Avontuur JAM, Ince BC (1995) Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res 76: 418–425PubMedCrossRefGoogle Scholar
  27. 27.
    Ayuse T, Brienza N, Revelly JP et al (1995) Role of nitric oxide in porcine live circulation under normal and endotoxemic conditions. J Appl Physiol 78: 1319–1329PubMedGoogle Scholar
  28. 28.
    Spath Jr JA, Sloane PJ, Gee MH et al (1994) Loss of endothelium-dependent vasodilation in the pulmonary vessels of sheep after prolonged endotoxin. J Appl Physiol 76: 361–369PubMedGoogle Scholar
  29. 29.
    Henderson JL, Statman R, Cunnigham JN et al (1994) The effects of nitric oxide inhibition on regional hemodynamics during hyperdynamic endotoxemia. Arch Surg 129: 1271–1275PubMedCrossRefGoogle Scholar
  30. 30.
    Pastor CM, Payen DM (1994) Effect of modifying nitric oxide pathway on liver circulation in a rabbit endotoxin shock model. Shock 2: 196–202PubMedCrossRefGoogle Scholar
  31. 31.
    Wang Y, Mathews WR, Guido DM et al (1995) Inhibition of nitric oxide synthesis aggravates reperfusion injury after hepatic ischemia and endotoxemia. Shock 4: 282–288PubMedCrossRefGoogle Scholar
  32. 32.
    Nishida J, McCuskey RS, McDonnell D et al (1994) Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol 267: G1135–G1141PubMedGoogle Scholar
  33. 33.
    Walker TA, Curtis SE, King-Van Vlack CE et al (1995) Effects of nitric oxide synthase inhibition on regional hemodynamics and oxygen transport in endotoxic dogs. Shock 4: 415–420PubMedGoogle Scholar
  34. 34.
    Billiar TR, Curran RD, Harbrecht BG et al (1990) Modulation of nitrogen oxide synthesis in vivo: NG-monomethyl-L-arginine inhibits endotoxin-induced nitrite/nitrate biosynthesis while promoting hepatic damage. J Leukoc Biol 48: 565–569PubMedGoogle Scholar
  35. 35.
    Caplan MS, Hedlund E, Hill N (1994) The role of endogenous nitric oxide and platelet-activating factor in hypoxia-induced intestinal injury in rats. Gastroenterology 106: 346–352PubMedGoogle Scholar
  36. 36.
    Pastor CM, Losser MR, Payen D (1995) Nitric oxide donor prevents hepatic and systemic perfusion decrease induced by endotoxin in anesthetized rabbits. Hepatology 22: 1547–1553PubMedGoogle Scholar
  37. 37.
    Werner J, Rivera J, Castillo CF et al (1997) Differing roles of nitric oxide in the pathogenesis of acute edematous versus necrotizing pancreatitis. Surgery 121: 23–30PubMedCrossRefGoogle Scholar
  38. 38.
    Spain DA, Wilson MA, Bloom ITM et al (1994) Renal microvascular responses to sepsis are dependent on nitric oxide. J Surg Res 56: 524–529PubMedCrossRefGoogle Scholar
  39. 39.
    Booke M, Hinder F, McGuire R et al (1996) Nitric oxide synthase inhibition versus norepinephrine for the treatment of hyperdynamic sepsis in sheep. Crit Care Med 24: 835–844PubMedCrossRefGoogle Scholar
  40. 40.
    Kubes P, Granger DN (1992) Nitric oxide modulates microvascular permeability. Am J Physiol 262: H611–H615PubMedGoogle Scholar
  41. 41.
    Kurose I, Kubes P, Wolf R et al (1993) Inhibition on nitric oxide production: mechanisms of vascular albumin leakage. Circ Res 73: 164–171PubMedCrossRefGoogle Scholar
  42. 42.
    Oliver JA (1992) Endothelium-derived relaxing factor contributes to the regulation of endothelial permeability. J Cell Physiol 151: 506–511PubMedCrossRefGoogle Scholar
  43. 43.
    Kubes P (1993) Ischemia-reperfusion in feline small intestine: a role for nitric oxide. Am J Physiol 264: G143–G149PubMedGoogle Scholar
  44. 44.
    Payne D, Kubes P (1993) Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol 265: G189–G195PubMedGoogle Scholar
  45. 45.
    Rumbaut RE, McKay MK, Huxley VH (1995) Capillary hydraulic conductivity is decreased by nitric oxide synthase inhibition. Am J Physiol 368: H1856–H1861Google Scholar
  46. 46.
    Kurose I, Wolf R, Grisham MB (1995) Effects of an endogenous inhibitor of nitric oxide synthesis on postcapillary venules. Am J Physiol 268: H2224–H2231PubMedGoogle Scholar
  47. 47.
    Fukatsu K, Saito H, Fukushima R et al (1995) Detrimental effects of nitric oxide synthase inhibitor (N-ω-nitro-L-arginine-methyl-ester) in a murine sepsis model. Arch Surg 130: 410–414PubMedCrossRefGoogle Scholar
  48. 48.
    Park J-H, Chang S-H, Lee K-M et al (1996) Protective effect of nitric oxide in an endotoxin-induced septic shock. Am J Surg 171: 340–345PubMedCrossRefGoogle Scholar
  49. 49.
    Fukatsu K, Saito H, Fukushima R et al (1996) Effects of three inhibitors of nitric oxide synthase on host resistance to bacterial infection. Inflamm Res 45: 109–112PubMedCrossRefGoogle Scholar
  50. 50.
    Minnard EA, Shou J, Naama H et al (1994) Inhibition of nitric oxide synthesis is detrimental during endotoxemia. Arch Surg 129: 142–148PubMedCrossRefGoogle Scholar
  51. 51.
    Szabó C, Mitchell JA, Thiemermann C et al (1993) Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol 108: 786–792PubMedGoogle Scholar
  52. 52.
    Mitchell JA, Kohlhaas KL, Sorrentino R et al (1993) Induction by endotoxin of nitric oxide synthase in the rat mesentery: lack of effect on action of vasconstrictors. Br J Pharmacol 109: 265–270PubMedGoogle Scholar
  53. 53.
    Morris S, Billiar T (1994) New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 266: E829–E839PubMedGoogle Scholar
  54. 54.
    Salter M, Knowles RG, Moncada S (1991) Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthase. FEBS 291: 145–149CrossRefGoogle Scholar
  55. 55.
    Wallis G, Brackett D, Lerner M et al (1996) In vivo spin trapping of nitric oxide generated in the small intestine, liver, and kidney during the development of endotoxemia: a time-course study. Shock 6: 274–278PubMedCrossRefGoogle Scholar
  56. 56.
    Parker JL, Adams HR (1993) Selective inhibition of endothelium-dependent vasodilator capacity by Escherichia coli endotoxemia. Circ Res 72: 539–551PubMedCrossRefGoogle Scholar
  57. 57.
    Wang P, Ba ZF, Chaudry IH (1995) Endothelium-dependent relaxation is depressed at the macro-and microcirculatory levels during sepsis. Am J Physiol 269: R988–R994PubMedGoogle Scholar
  58. 58.
    Lu J-L, Schmiege III LM, Kuo L et al (1996) Downregulation of endothelial constitutive nitric oxide synthase expression by lipopolysaccharide. Biochem Biophys Res Commun 225: 1–5PubMedCrossRefGoogle Scholar
  59. 59.
    Yoshizumi M, Perrella MA, Burnett Jr JC et al (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half life. Circ Res 73: 205–209PubMedCrossRefGoogle Scholar
  60. 60.
    Laszlo F, Whittle BJR, Evans SM et al (1995) Association of microvascular leakage with induction of nitric oxide synthase: effects of nitric oxide synthase inhibitors in various organs. Eur J Pharmacol 283: 47–53PubMedCrossRefGoogle Scholar
  61. 61.
    Nava E, Palmer RMJ, Moncada S (1991) Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet 338: 1555–1557PubMedCrossRefGoogle Scholar
  62. 62.
    Radomski MW, Palmer RM, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci USA 87: 10043–10047PubMedCrossRefGoogle Scholar
  63. 63.
    DiRosa M, Radomski M, Carnuccio R et al (1990) Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun 172: 1246–1252CrossRefGoogle Scholar
  64. 64.
    McCall TB, Palmer RM, Moncada S (1991) Induction of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone. Eur J Immunol 21: 2523–2527PubMedCrossRefGoogle Scholar
  65. 65.
    Pittner R, Spitzer J (1992) Endotoxin and TNF-α directly stimulate nitric oxide formation in cultured rat hepatocytes from chronically endotoxemic rats. Biochem Biophys Res Commun 185: 430–435PubMedCrossRefGoogle Scholar
  66. 66.
    Rees DD, Cellek S, Palmer RM et al (1990) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: An insight into endotoxin shock. Biochem Biophys Res Commun 173: 541–547PubMedCrossRefGoogle Scholar
  67. 67.
    Knowles RG, Salter M, Brooks SL et al (1990) Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun 172: 1042–1048PubMedCrossRefGoogle Scholar
  68. 68.
    Geiger M, Stone A, Mason SN et al (1997) Differential nitric oxide production by microvascular and macrovascular endothelial cells. Am J Physiol 273: L275–L281PubMedGoogle Scholar
  69. 69.
    Paya D, Gray G, Fleming I et al (1993) Effect of dexamethasone on the onset and persistence of vascular hyporeactivity induced by E. coli lipopolysaccharide in rats. Circ Shock 41: 103–112PubMedGoogle Scholar
  70. 70.
    Misko TP, Moore WM, Kasten TP et al (1993) Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol 233: 119–125PubMedCrossRefGoogle Scholar
  71. 71.
    Szabo C, Southan G, Thiemermann C (1994) Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA 91: 12472–12476PubMedCrossRefGoogle Scholar
  72. 72.
    Chamulitrat W, Skrepnik NV, Spitzer JJ (1996) Endotoxin-induced oxidative stress in the rat small intestine: role of nitric oxide. Shock 5: 217–222PubMedCrossRefGoogle Scholar
  73. 73.
    Aranow JS, Zhuang J, Wang H et al (1996) A selective inhibitor of inducible nitric oxide synthase prolongs survival in a rat model of bacterial peritonitis: comparison with two nonselective strategies. Shock 5: 116–121PubMedCrossRefGoogle Scholar
  74. 74.
    Southan GJ, Zingarelli B, O’Connor M et al (1996) Spontaneous rearrangement of aminoalkylisothioureas into mercaptoalkylguanidines, a novel class of nitric oxide synthase inhibitors with selectivity towards the inducible isoform. Br J Pharmacol 117: 619–632PubMedGoogle Scholar
  75. 75.
    Vromen A, Arkovitz MS, Zingarelli B et al (1996) Low-level expression and limited role for the inducible isoform of nitric oxide synthase in the vascular hyporeactivity and mortality associated with cecal ligation and puncture in the rat. Shock 6: 248–253PubMedCrossRefGoogle Scholar
  76. 76.
    Corraliza IM, Campo ML, Fuentes JM et al (1993) Parallel induction of nitric oxide and glucose-6-phosphate dehydrogenase in activated bone marrow derived macrophages. Biochem Biophys Res Commun 196: 342–347PubMedCrossRefGoogle Scholar
  77. 77.
    Billiar TR (1995) Nitric oxide: novel biology with clinical relevance. Ann Surg 221: 339–349PubMedCrossRefGoogle Scholar
  78. 78.
    King CE, Melinyshyn MJ, Mewburn JD (1994) Canine hindlimb blood flow and O2 uptake after inhibition of EDRF/NO synthesis. J Appl Physiol 76: 1166–1171PubMedGoogle Scholar
  79. 79.
    Greenberg S, Xie J, Wang Y et al (1993) Tumor necrosis factor-alpha inhibits endothelium-dependent relaxation. J Appl Physiol 74: 2394–2403PubMedGoogle Scholar
  80. 80.
    Myers PR, Wright TF, Tanner MA et al (1992) EDRF and nitric oxide production in cultured endothelial cells: direct inhibition by E. coli endotoxin. Am J Physiol 262: H710–H718PubMedGoogle Scholar
  81. 81.
    Christopher TA, Ma X-L, Lefer AM (1994) Beneficial actions of S-nitroso-N-acetylpenicil-lamine, a nitric oxide donor, in murine traumatic shock. Shock 1: 19–24PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang H, Rogiers P, Spapen H et al (1996) Effects of nitric oxide donor SIN-1 on oxygen availability and regional blood flow during endotoxic shock. Arch Surg 131: 767–774PubMedCrossRefGoogle Scholar
  83. 83.
    Siegfride MR, Erhardt J, Rider T et al (1992) Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemia-reperfusion. J Pharmacol ExpTher 260: 668–675Google Scholar
  84. 84.
    Pabla R, Buda AJ, Flynn DM et al (1995) Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function. Am J Physiol 269: H1113–H1121PubMedGoogle Scholar
  85. 85.
    Schluter KD, Weber M, Schraveb E et al (1994) NO donor SIN-1 protects against reoxygenation-induced cardiomyocyte injury by a dual action. Am J Physiol 267: H1461–H1466PubMedGoogle Scholar
  86. 86.
    Frederick JA, Hasseigren PO, Davis S et al (1993) Nitric oxide may upregulate in vivo hepatic protein synthesis during endotoxemia. Arch Surg 128: 152–157PubMedCrossRefGoogle Scholar
  87. 87.
    Boughton-Smith NK, Hucheson IR, Deakin AM (1994) Protective effect of S-nitroso-N-acetyl-penicillamine in endotoxin-induced acute intestinal damage in the rat. Eur J Pharmacol 191: 485–488CrossRefGoogle Scholar
  88. 88.
    Andrews FJ, Malcontenti-Wilson C, O’Brien PE (1994) Protection against gastric ischemia-reperfusion injury by nitric oxide generators. Dig Dis Sci 39: 366–373PubMedCrossRefGoogle Scholar
  89. 89.
    Carey C, Siegfried MR, Ma X-L et al (1992) Antishock and endothelial protective actions of a NO donor in mesenteric ischemia and reperfusion. Circ Shock 38: 209–216PubMedGoogle Scholar
  90. 90.
    Kurose I, Wolf R, Grisham MB et al (1994) Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res 74: 376–382PubMedCrossRefGoogle Scholar
  91. 91.
    Gauthier TW, Davenpeck KL, Lefer AM (1994) Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol 267: G562–G568PubMedGoogle Scholar
  92. 92.
    Bubanyi GM, Ho EH, Cantor EH et al (1991) Cytoprotective function of nitric oxide: inactivation of Superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181: 1392–1397CrossRefGoogle Scholar
  93. 93.
    Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456PubMedCrossRefGoogle Scholar
  94. 94.
    Moilanen E, Vuorinen P, Kankaanranta H et al (1993) Inhibition by nitric oxide-donors of human polymorphonuclear leucocyte functions. Br J Pharmacol 109: 852–858PubMedGoogle Scholar
  95. 95.
    Kumins NH, Hunt J, Gamelli RL et al (1997) Molsidomine increases endotoxic survival and decreases cytokine production. Shock 7: 200–205PubMedCrossRefGoogle Scholar
  96. 96.
    Harrison DK, Birkenhake S, Knauf SK et al (1990) Local oxygen supply and blood flow regulation in contracting muscle in dogs and rabbits. J Physiol 422: 227–243PubMedGoogle Scholar
  97. 97.
    Vallet B, Curtis SE, Winn MJ et al (1994) Hypoxie vasodilation does not require nitric oxide (EDRF/NO) synthesis. JAppl Physiol 76: 1256–1261Google Scholar
  98. 98.
    Ward ME, Hussain SNA (1994) Effect of inhibition of nitric oxide release on the diaphragmatic oxygen delivery-consumption relationship. J Crit Care 9: 90–99PubMedCrossRefGoogle Scholar
  99. 99.
    Schumacker PT, Kazaglis J, Connolly HV et al (1995) Systemic and gut O2 extraction during endotoxemia: role of nitric oxide synthesis. Am J Respir Crit Care Med 151: 107–115PubMedGoogle Scholar
  100. 100.
    Zhang H, Nguyen DN, Spapen H et al (1995) Sodium nitroprusside does not influence tissue oxygen extraction capabilities during a critical reduction in oxygen delivery. Cardiovasc Res 30: 240–245PubMedGoogle Scholar
  101. 101.
    Payne D, Kubes P (1993) Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol 265: G189–G195PubMedGoogle Scholar
  102. 102.
    Greenberg S, Xie J, Wang Y et al (1993) Tumor necrosis factor-α inhibits endothelium-dependent relaxation. J Appl Physiol 4: 2394–2403Google Scholar
  103. 103.
    Bordet JC, Lagard M (1988) Modulation of prostacyclin/thromboxane formation by molsidomine during platelet-endothelial cell interactions. Biochem Pharmacol 37: 3911–3914PubMedCrossRefGoogle Scholar
  104. 104.
    Pryor W, Squadrito G (1995) The chemistry of peroxynitrite: A product from the reaction of nitric oxide with Superoxide. Am J Physiol 268: L699–L722PubMedGoogle Scholar
  105. 105.
    Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxinitrite: Implication for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87: 1620–1624PubMedCrossRefGoogle Scholar
  106. 106.
    Rubanyi GM, Ho EH, Cantor EH et al (1991) Cytoprotective function of nitric oxide: inactivation of Superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181: 1392–1397PubMedCrossRefGoogle Scholar
  107. 107.
    Rubbo H, Radi R, Trujillo M et al (1994) Nitric oxide regulation of Superoxide and peroxynitrite dependent lipid peroxidation: formation of novel nitrogen containing oxidized lipid derivatives. J Biol Chem 269: 26066–26075PubMedGoogle Scholar
  108. 108.
    Bautista AP, Spitzer JJ (1994) Inhibition of nitric oxide formation in vivo enhances superoxide release by the perfused liver. Am J Physiol 266: G783–G788PubMedGoogle Scholar
  109. 109.
    Hogg NB, Kalyanaraman, Joseph J et al (1993) Inhibition of low density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett 334: 170–174PubMedCrossRefGoogle Scholar
  110. 110.
    Malo-Ranta U, Yla-Herttuala S, Metsa-Ketela T et al (1994) Nitric oxide donor GEA 3162 inhibits endothelial cell mediated oxidation of low density lipoprotein. FEBS Lett 337: 179–183PubMedCrossRefGoogle Scholar
  111. 111.
    Wink DA, Hanbauer I, Krishna MC et al (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90: 9813–9817PubMedCrossRefGoogle Scholar
  112. 112.
    Rubbo H, Radi R, Trujillo M (1994) Nitric oxide regulation of Superoxide and peroxynitrite-dependent lipid peroxidation: Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269: 26066–26075PubMedGoogle Scholar
  113. 113.
    Villa LM, Salas E, Darley-Usmar M et al (1994) Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci USA 91: 12383–12387PubMedCrossRefGoogle Scholar
  114. 114.
    Crow JP, Beckman JS (1995) The role of peroxynitrite in nitric oxide-mediated toxicity. Curr Top Microbiol Immunol 196: 57–73PubMedCrossRefGoogle Scholar
  115. 115.
    Miles AM, Bohle DS, Glassbrenner PA et al (1996) Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem 271: 40–47PubMedCrossRefGoogle Scholar
  116. 116.
    Zingarelli B, Day BJ, Crapo JD et al (1997) The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol 120: 259–267PubMedCrossRefGoogle Scholar
  117. 117.
    Pryor WA, Jin X, Squadrito GL (1994) One-and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA 91: 11173–11177PubMedCrossRefGoogle Scholar
  118. 118.
    Radi R, Beckman JS, Bush KM et al (1991) Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of Superoxide and nitric oxide. J Biol Chem 266: 4244–4250PubMedGoogle Scholar
  119. 119.
    Radi R, Beckman JS, Bush KM et al (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487PubMedCrossRefGoogle Scholar
  120. 120.
    Moreno JJ, Pryor WA (1992) Inactivation of α-1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol 5: 425–431PubMedCrossRefGoogle Scholar
  121. 121.
    Bartlett D, Church DF, Bounds PL et al (1995) The kinetics of the oxidation of L-ascorbic acid by peroxynitrite. Free Radical Biol Med 18: 85–92CrossRefGoogle Scholar
  122. 122.
    Lopez BL, Liu GL, Christopher TA, Ma XL (1997) Peroxynitrite, the product of nitric oxide and Superoxide, causes myocardial injury in the isolated perfused rat heart. Coron Artery Dis 8: 149–153PubMedCrossRefGoogle Scholar
  123. 123.
    Chen K, Inoue M, Okada A (1996) Expression of inducible nitric oxide synthase mRNA in rat digestive tissues after endotoxin and its role in intestinal mucosal injury. Biochem Biophys Res Commun 224: 703–708PubMedCrossRefGoogle Scholar
  124. 124.
    Schneider F, Lutun P, Hasselmann M et al (1992) Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations. Intensive Care Med 18: 309–311PubMedCrossRefGoogle Scholar
  125. 125.
    Preiser J-C, Lejeune P, Roman A et al (1995) Methylene blue administration in septic shock: A clinical trial. Crit Care Med 23: 259–264PubMedCrossRefGoogle Scholar
  126. 126.
    Daemen-Gubbels CR, Groeneveld PH, Grovneveld AM et al (1995) Methylene blue increases myocardial function in septic shock. Crit Care Med 23: 1363–1370PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • H. Zhang
  • J. L. Vincent

There are no affiliations available

Personalised recommendations