Advertisement

Rationale for Reduction of Alveolar Ventilation in ARDS

  • K. Hickling

Abstract

The main evidence supporting pressure limited ventilation in the adult respiratory distress syndrome (ARDS), has come from animal studies demonstrating that mechanical ventilation (MV) can cause a form of acute parenchymal lung injury histologically similar to ARDS, resulting in progressive respiratory failure and sometimes death. In some animal models the ventilator-induced lung injury (VILI) is associated with an inflammatory response, with granulocyte sequestration in the lung and increased systemic and pulmonary vascular permeability [1], pulmonary hypertension apparently mediated at least in part by thromboxane A2 [2], the production of proinflammatory cytokines [3] and platelet activating factor [4] in the lung, and increased neutrophil accumulation in the lung and reduced chemotaxis of circulating neutrophils [5]. High pressure ventilation in rabbits [6] and in dogs [7] following tracheal inoculation of E. Coli led to reduced bacterial clearance from the lung, and more positive blood cultures than in control animals. Such consequences of MV could potentially induce or amplify a systemic inflammatory response syndrome if they occur in patients with ARDS, perhaps contributing to the development of multiple organ dysfunction syndrome. Studies of ventilator-induced lung injury are discussed in detail in other chapters.

Keywords

Respir Crit Plateau Pressure Peak Inspiratory Pressure Alveolar Ventilation Permissive Hypercapnia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawano T, Mori S, Cybulsky et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62: 27–33PubMedGoogle Scholar
  2. 2.
    Burger D, Fung D, Bryan AC (1990) Lung injury in a surfactant-deficient lung is modified by indomethacin. J Appl Physiol 69: 2067–2071PubMedGoogle Scholar
  3. 3.
    Tremblay L, Valenza F, Ribeiro SP et al (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952PubMedCrossRefGoogle Scholar
  4. 4.
    Imai Y, Kawano T, Miyasaka K et al (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150: 1550–1554PubMedGoogle Scholar
  5. 5.
    Sugiura M, McCulloch P, Wren S et al (1994) Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol 77: 1355–1365PubMedGoogle Scholar
  6. 6.
    Parker JC, Roohparvar S, Foster J et al (1991) High peak inspiratory pressures (PIP) affect the rate of bacterial clearance from rabbit lungs. Am Rev Respir Dis 143: A570Google Scholar
  7. 7.
    Nahum A, Hoyt J, McKibben A et al (1996) Effect of mechanical ventilation strategy on E. Coli pneumonia in dogs. Am J Respir Crit Care Med 153(4 part 2): A530Google Scholar
  8. 8.
    Muscadere JG, Mullen JBM, Gan K et al (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334Google Scholar
  9. 9.
    Sandhar BK, Niblett DJ, Argiras EP et al (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538–546PubMedCrossRefGoogle Scholar
  10. 10.
    Bentio S, Lemaire F (1990) Pulmonary pressure-volume relationship in acute respiratory distress syndrome in adults: Role of positive end expiratory pressure. J Crit Care 15: 27–34Google Scholar
  11. 11.
    Roupie E, Dambrosio M, Servillo G et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128PubMedGoogle Scholar
  12. 12.
    Gattinoni L, Pelosi P, Crotti S et al (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807–1814PubMedGoogle Scholar
  13. 13.
    Sjostrand UH, Lichtwark-Aschoff M, Neilsen JB et al (1995) Different ventilatory approaches to keep the lung open. Intensive Care Med 21: 310–318PubMedCrossRefGoogle Scholar
  14. 14.
    Gattinoni L, D’Andrea L, Pelosi P et al (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269: 2122–2127PubMedCrossRefGoogle Scholar
  15. 15.
    Ranieri VM, Mascia L, Fiore T et al (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiol 83: 710–720CrossRefGoogle Scholar
  16. 16.
    Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic study. Am Rev Respir Dis 136: 730–736PubMedCrossRefGoogle Scholar
  17. 17.
    Slutsky A (1993) Mechanical ventilation: report of American College of Chest Physicians consensus conference. Chest 104: 1833–1859PubMedCrossRefGoogle Scholar
  18. 18.
    Pelosi P, Cereda M, Foti G et al (1995) Alterations of lung and chest wall mechanics with acute lung injury: Effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152: 531–537PubMedGoogle Scholar
  19. 19.
    Kiiski R, Takala J, Kari A et al (1992) Effect of tidal volume on gas exchange and oyxgen transport in the adult respiratory distress syndrome. Am Rev Respir Dis 146: 1131–1135PubMedGoogle Scholar
  20. 20.
    Bidani A, Tzouanakis AE, Cardenas VJ et al (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272: 957–962PubMedCrossRefGoogle Scholar
  21. 21.
    Hickling KG (1992) Low volume ventilation with permissive hypercapnia in the adult respiratory distress syndrome. Clinical Intensive Care 3: 67–78PubMedGoogle Scholar
  22. 22.
    Tuxen DV (1994) Permissive hypercapnic ventilation. Am J Respir Crit Care Med 150: 870–874PubMedGoogle Scholar
  23. 23.
    Hickling KG (1995) Permissive hypercapnia in ARDS. Intensive Care World 12: 121–130Google Scholar
  24. 24.
    Abdel-Rassoul M, DeBellis J, Stein M (1977) Acute gastrointestinal bleeding during experimental hypercarbia. Chest 71: 514–520PubMedCrossRefGoogle Scholar
  25. 25.
    Feihl F, Perret C (1994) Permissive hypercapnia: How permissive should we be? Am J Respir Crit Care Med 150: 1722–1737PubMedGoogle Scholar
  26. 26.
    Ward ME (1996) Respiratory acidosis impairs oxygen extraction during haemorrhagic shock. Am J Respir Crit Care Med 153 part 2: A125Google Scholar
  27. 27.
    Brimioulle S, Vachiery JL, Lejeune P et al (1991) Acid-base status affects gas exchange in canine oleic-acid pulmonary edema. Am J Physiol (Heart Circ Physiol 29) 260: H1086Google Scholar
  28. 28.
    Hickling K (1997) Targets during mechanical ventilation. In: Marini JJ and Slutsky AS (eds) The physiological basis of ventilatory support. Lung Biology in Health and Disease series, Marcel Dekker (in press)Google Scholar
  29. 29.
    Amato M, Barbas C, Medeiros D et al (1995) Beneficial effects of the “open lung” approach with low distending pressures in acute respiratory distress syndrome. A prospective randomised study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835–1846PubMedGoogle Scholar
  30. 30.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16: 372–377PubMedCrossRefGoogle Scholar
  31. 31.
    Hickling KG, Henderson S, Walsh J et al (1994) Low mortality using low volume pressure limited ventilation with permissive hypercapnia in ARDS: a prospective study. Crit Care Med 22: 1568–1578PubMedCrossRefGoogle Scholar
  32. 32.
    Lewandowski K, Falke KJ, Rossaint R et al (1992) Low mortality associated with advanced treatment including V-V ECMO for severe ARDS. Intensive Care Med 19: S42Google Scholar
  33. 33.
    Sheridan RL, Kacmarek RM, McEttrick MM et al (1995) Permissive hypercapnia as a ventilatory strategy in burned children: effect on barotrauma, pneumonia and mortality. J Trauma 39: 854–859PubMedCrossRefGoogle Scholar
  34. 34.
    Toth JL, Capellier G, Walker P et al (1992) Lung emphysematous changes in ARDS. Am Rev Respir Dis 145: A184Google Scholar
  35. 35.
    Levy B, Bollaert PE, Bauer P et al (1995) Therapeutic optimisation including inhaled nitric oxide in Adult Respiratory Distress Syndrome in a polyvalent intensive care unit. J Trauma 38: 370–374PubMedCrossRefGoogle Scholar
  36. 36.
    Thomsen GE, Morris AH, Pope D et al (1994) Mechanical ventilation of patients with adult respiratory distress syndrome using reduced tidal volumes. Crit Care Med 22: A205CrossRefGoogle Scholar
  37. 37.
    Nakagawa S, Bohn D (1995) Pressure controlled ventilation with limited peak inspiratory pressure below 35 to 40 cm H2O may improve survival of pediatric acute respiratory failure. Am J Respir Crit Care Med 151:A77Google Scholar
  38. 38.
    Botero C, Reda Z, Mendoza P et al (1995) Pressure limited ventilation with permissive hypercapnia (PH) in children with ARDS. Crit Care Med 23: A188CrossRefGoogle Scholar
  39. 39.
    Gentilello L, Anardi D, Mock C et al (1995) Permissive hypercapnia in trauma patients. J Trauma 39: 846PubMedCrossRefGoogle Scholar
  40. 40.
    Reda Z, Maggi JC (1997) Permissive hypercapnia: a cost-effective strategy that reduces mortality in acute respiratory distress syndrome. Crit Care Med 25[Suppl]: A29(3)Google Scholar
  41. 41.
    Amato M, Barbas C, Medeiros D et al (1996) Improved survival in ARDS: Beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153(4 part 2) A531Google Scholar
  42. 42.
    Amato M, Barbas C, Pastore L et al (1996) Minimising barotrauma in ARDS: Protective effects of PEEP and the hazards of driving and plateau pressures. Am J Respir Crit Care Med 153(4 part 2) A375Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • K. Hickling

There are no affiliations available

Personalised recommendations