Mechanical Ventilation in ARDS: What a Fine Mess!

  • P. Pelosi
  • L. Brazzi
Conference paper


Adult respiratory distress syndrome (ARDS) is characterized by high mortality rate despite enormous progress in the technology of ventilators, improvement in the diagnostic tools and in the pharmacological treatment [1-3]. Mechanical ventilation, although necessary, is generally considered to be one of the main causes of further lung injury to diseased lungs, reducing the possibility of recovery (ventilator-associated lung injury). Ventilator-associated lung injury (VALI) is the consequence of a sustained increase in alveolar pressure (“barotrauma”), alveolar distension (“volutrauma”) or alveolar collapse and decollapse with cycling during inspiration and expiration (“shear stress trauma”). Recent clinical studies suggest that the optimal ventilatory treatment should combine the use of a reduced tidal volume with consequent permissive hypercapnia to reduce volutrauma, low inspiratory pressures to reduce barotrauma and an adequate level of positive end-expiratory pressure to recruit as much collapsed parenchyma as possible to reduce shear stress trauma [4, 5]. However, different etiologies leading to ARDS and time may produce different alterations in the lung structure with consequent different responses to the ventilatory treatment.


Tidal Volume Acute Respiratory Failure Respir Crit Adult Respiratory Distress Syndrome Transpulmonary Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewandowski K, Metz J, Deutschmann C et al (1995) Incidence, severity and mortality of acute respiratory failure in Berlin, Germany. Am J Respir Crit Care Med 107: 1121–1125Google Scholar
  2. 2.
    Vasilyev S, Schaap RN, Mortensen JD (1995) Hospital survival rates of patients with acute respiratory failure in modern respiratory intensive care units: an international, multicenter, prospective survey. Chest 107: 1083–1088PubMedCrossRefGoogle Scholar
  3. 3.
    Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824PubMedGoogle Scholar
  4. 4.
    Hickling KG, Walsh J, Henderson S et al (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22: 1568–1578PubMedCrossRefGoogle Scholar
  5. 5.
    Amato MBP, Barbas CSV, Medeiros DM et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (abstract)Google Scholar
  6. 6.
    Manning HL (1994) Peak airway pressure: why the fuss? Chest 105: 242–247PubMedCrossRefGoogle Scholar
  7. 7.
    Kolobow T, Moretti MP, Fumagalli R et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315PubMedGoogle Scholar
  8. 8.
    Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol 89: 956–961Google Scholar
  9. 9.
    de Latorre F, Tomasa A, Klamburg J (1977) Incidence of pneumothorax and pneumomediastinum in patients with aspiration requiring ventilatory support. Chest 72: 141–144PubMedCrossRefGoogle Scholar
  10. 10.
    Peterson G, Baier H (1983) Incidence of pulmonary barotrauma in a medical ICU. Crit Care Med 11: 67–71CrossRefGoogle Scholar
  11. 11.
    Shanapp LM, Chin DP, Szaflasrski N et al (1995) Frequency and importance of barotrauma in 100 patients with acute lung injury. Crit Care Med 23: 212–218Google Scholar
  12. 12.
    Dreyfuss D, Basset G, Soler P et al (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884PubMedGoogle Scholar
  13. 13.
    Dreyfuss D, Soler P, Basset G et al (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164PubMedGoogle Scholar
  14. 14.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203PubMedGoogle Scholar
  15. 15.
    Dreyfuss D, Soler P, Saumon G (1995) Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med 151: 1568–1675PubMedGoogle Scholar
  16. 16.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 569–608Google Scholar
  17. 17.
    Muscedere JC, Mullen JBM, Gan K et al (1994) Tidal volume at low pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334PubMedGoogle Scholar
  18. 18.
    Slutsky AS (1993) Mechanical ventilation. Chest 104: 1833–1859. Also, (1994) Intensive Care Med 20: 64-79PubMedCrossRefGoogle Scholar
  19. 19.
    Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end-expiratory pressure in acute respiratory failure. Intensive Care Med 12: 137–142PubMedCrossRefGoogle Scholar
  20. 20.
    Tagliabue M, Casella TC, Zincone GE et al (1994) CT and chest radiography in the evaluation of adult respiratory distress syndrome. Acta Radiologica 35: 230–234PubMedGoogle Scholar
  21. 21.
    Brismar B, Hedenstierna G, Lundquist H (1985) Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62: 422–428PubMedCrossRefGoogle Scholar
  22. 22.
    Pelosi P, D’Andrea L, Vitale G et al (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149: 8–13PubMedGoogle Scholar
  23. 23.
    Gattinoni L, Bombino M, Pelosi P et al (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 271: 1772–1779PubMedCrossRefGoogle Scholar
  24. 24.
    Rouby JJ, Lhem E, Martin de Lassale E et al (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19: 383–389PubMedCrossRefGoogle Scholar
  25. 25.
    Gattinoni L, Pelosi P, Crotti S et al (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807–1814PubMedGoogle Scholar
  26. 26.
    Crotti S, Mascheroni D, Pelosi P et al (1997) The inspiratory plateau pressure level affects end-expiratory lung inflation and densities during pressure controlled ventilation: a CT scan study in ARDS patients. Am J Respir Crit Care Med 155: A88 (abstract)Google Scholar
  27. 27.
    Crotti S, Mascheroni D, Pelosi P et al (1997) Distribution of lung inflation and tidal volume during pressure controlled ventilation in ARDS: effects of PEEP. Am J Respir Crit Care Med 155: A87 (abstract)Google Scholar
  28. 28.
    Pelosi P, Crotti S, Brazzi L et al (1996) Computed tomography in adult respiratory distress syndrome: what has it taught us? Eur Respir J 9: 1055–1062PubMedCrossRefGoogle Scholar
  29. 29.
    Pelosi P, Cereda M, Foti G et al (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152: 532–537Google Scholar
  30. 30.
    Pelosi P, Croci M, Chiumello D et al (1996) Direct or indirect lung injury differently affects respiratory mechanics during acute respiratory failure. Intensive Care Med 22: 105 (abstract)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • P. Pelosi
  • L. Brazzi

There are no affiliations available

Personalised recommendations