Advertisement

Physiological Rationale to Prevent Ventilation-Induced Lung Injury

  • B. Lachmann
  • S. J. C. Verbrugge

Abstract

Acute respiratory distress syndrome (ARDS) has become a well-recognized condition that can result from a number of different causes, e.g. sepsis, shock, pneumonia, trauma, liquid aspiration, hematologic disorders, smoke inhalation and many others [1]. Despite diverse etiologies of ARDS, the final common pathway results in damage of the alveolar epithelium and endothelium, which leads to high permeability edema.

Keywords

Mechanical Ventilation Acute Respiratory Distress Syndrome Bacterial Translocation Adult Respiratory Distress Syndrome Acute Respiratory Distress Syndrome Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernard GR, Artigas A, Brigham KL et al (1994) The American-European consensus conference on ARDS: definitions, mechanics, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824PubMedGoogle Scholar
  2. 2.
    Holm BA (1992) Surfactant inactivation in adult respiratory distress syndrome. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Amsterdam: Elsevier, 665–684Google Scholar
  3. 3.
    Ashbaugh DG, Bigelow DB, Petty TL et al (1967) Acute respiratory distress in adults. Lancet 319-323Google Scholar
  4. 4.
    Montgomery AB, Stager MA, Carrico J et al (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132: 485–489PubMedGoogle Scholar
  5. 5.
    Villar J, Manzano J, Blazquez M et al (1991) Multiple system organ failure in acute respiratory failure. J Crit Care 6: 75–80CrossRefGoogle Scholar
  6. 6.
    Demling RH (1993) Adult respiratory distress syndrome: Current concepts. New Horizons 1: 388–401PubMedGoogle Scholar
  7. 7.
    Krafft P, Fridrich P, Perner St et al (1996) The acute respiratory distress syndrome: definitions, severity and clinical outcome. Int Care Med 22: 519–529CrossRefGoogle Scholar
  8. 8.
    Amato MBP, Barbas CSV, Medeiros D et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am Rev Respir Crit Care Med 153: A531Google Scholar
  9. 9.
    Houmes RJ, Bos JAH, Lachmann B (1994) Effects of different ventilator settings on lung mechanics: with special reference to the surfactant system. Appl Cardiopulm Pathophysiol 5: 117–127Google Scholar
  10. 10.
    Mead J, Collier C (1959) Relation of volume history of lungs to respiratory mechanics in anesthetized dogs. J Appl Physiol 14: 669–678Google Scholar
  11. 11.
    Greenfield LJ, Ebert PA, Benson DW (1964) Effect of positive pressure ventilation on surface tension properties of lung extracts. Anesthesia 25: 312–316CrossRefGoogle Scholar
  12. 12.
    Faridy EE, Permutt S, Riley RL (1966) Effect of ventilation on surface forces in excised dogs’ lungs. JAppl Physiol 21: 1453–1462Google Scholar
  13. 13.
    McClenahan JB, Urtnowski A (1967) Effect of ventilation on surfactant and its turnover rate. J Appl Physiol 23: 215–230PubMedGoogle Scholar
  14. 14.
    Forrest JB (1972) The effect of hyperventilation on pulmonary surface acivity. Br J Anaesth 44: 313–319PubMedCrossRefGoogle Scholar
  15. 15.
    Faridy EE (1976) Effect of ventilation on movement of surfactant in airways. Resp Physiol 27: 323–334CrossRefGoogle Scholar
  16. 16.
    Veldhuizen RAW, Marcou J, Yao LJ et al (1996) Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits. Am J Physiol 270: L152–L158PubMedGoogle Scholar
  17. 17.
    Lachmann B, Eijking EP, So KL et al (1994) In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function. Intens Care Med 20: 6–11CrossRefGoogle Scholar
  18. 18.
    Winsel K, Lachmann B, Iwainsky H (1978) Changes in lung and liver phospholipids after intra-venous injection of an anti-lung serum, Proceedings of an International Symposium, Varna, Bulgaria, May 19–22, 1976. Edited by Georgiev GA. Sofia, pp 83-96Google Scholar
  19. 19.
    Muscerede JG, Mullen JBM, Gan K (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Resp Crit Care Med 149: 1327–1334Google Scholar
  20. 20.
    John TV, Evander E, Robertson B et al (1997) Surfactant dysfunction makes lung vulnerable to repetitive collapse and reexpansion. Am J Resp Crit Care Med 155: 313–320PubMedGoogle Scholar
  21. 21.
    Nilsson R, Grossman G, Robertson B (1980) Pathogenesis of neonatal lung lesions induced by artificial ventilation: evidence against the role of barotrauma. Respiration 40: 218–225PubMedCrossRefGoogle Scholar
  22. 22.
    Tilson MD, Bunke MC, Walker Smith GJ et al (1977) Quantitative bacteriology and pathology of the lung in experimental Pseudomonas pneumonia treated with positive end-expiratory pressure (PEEP). Surgery 82: 133–140PubMedGoogle Scholar
  23. 23.
    Nahum A, Hoyt J, McKibben A et al (1996) Effect of mechanical ventilation strategy on E. Coli pneumonia in dogs. Am Rev Resp Crit Care Med 153: A530Google Scholar
  24. 24.
    Simon RH, Paine R (1995) Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med 126: 108–118PubMedGoogle Scholar
  25. 25.
    Lansman JB, Hallam TJ, Rink Tj (1987) Single stretch activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325: 811–813PubMedCrossRefGoogle Scholar
  26. 26.
    Martin DK, Bootcov MR, Campbell TJ et al (1995) Human macrophages contain a stretch-sensitive potassium channel that is activated by adherence and cytokines. J Membrane Biol 147: 305–315CrossRefGoogle Scholar
  27. 27.
    Felix JA, Woodruff ML, Dirksen ER (1996) Stretch increases inositol 1,4, 5-triphosphate concentration in airway epithelial cells. Am J Resp Cell Mol Biol 14: 296–301Google Scholar
  28. 28.
    Imai Y, Kawano T, Miyasaka K et al (1994) Inflammatory chemical mediators during conventional mechanical ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150: 1550–1554PubMedGoogle Scholar
  29. 29.
    von Bethmann AN, Brasch F, Müller KM et al (1996) Barotrauma induced cytokine and eicosanoid-release from the isolated and perfused mouse lung. Am Rev Resp Crit Care Med 153: A529Google Scholar
  30. 30.
    von Bethmann AN, Brasch F, Müller K (1996) Prolonged hyperventilation is required for release of tumor necrosis factor alpha but not IL-6. Appl Cardiopulm Pathophysiol 6: 171–177Google Scholar
  31. 31.
    Tremblay L, Valenza F, Ribeiro SP et al (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952PubMedCrossRefGoogle Scholar
  32. 32.
    St John RC, Dorinsky PM (1993) Immunologic therapy for ARDS, septic shock and multiple-organ failure. Chest 103: 932–943PubMedCrossRefGoogle Scholar
  33. 33.
    Messent M, Griffiths MJ (1992) The pulmonary physician and critical care. 3. Pharmacotherapy in lung injury. Thorax 47: 651–656PubMedCrossRefGoogle Scholar
  34. 34.
    Van Asbeck BS, van der Wal WA (1989) Role of oxygen radicals and antioxidants in adult respiratory distress syndrome. Potentials in therapy. Resuscitation 18: S63–S83PubMedCrossRefGoogle Scholar
  35. 35.
    Christman BW, Bernard GR (1993) Antilipid mediator and antioxidant therapy in adult respiratory distress syndrome. New Horizons 1: 623–630PubMedGoogle Scholar
  36. 36.
    Goldstein G, Luce JM (1990) Pharmacologic treatment of the adult respiratory distress syndrome. Clin Chest Med 11: 773–787PubMedGoogle Scholar
  37. 37.
    Hooper RG, Kearl RA (1990) Established ARDS treated with a sustained course of adrenocortical steroids. Chest 98: 1310–1311CrossRefGoogle Scholar
  38. 38.
    Flick MR, Murray JF (1984) High-dose corticosteroid therapy in the adult respiratory distress syndrome. JAMA 251: 1054–1056PubMedCrossRefGoogle Scholar
  39. 39.
    Frazee KA, Neidig JA (1995) Ketoconazole to prevent acute respiratory distress syndrome in critically ill patients. Ann Pharmacother 29: 784–786PubMedGoogle Scholar
  40. 40.
    Yu M, Tomasa G (1995) A double-blind, prospective randomized clinical trial of ketoconazole, a tromboxane synthetase inhibitor, in the prophylaxis of the adult respiratory distress syndrome. Crit Care Med 21: 1635–1642CrossRefGoogle Scholar
  41. 41.
    Gregory TJ, Steinberg KP, Spragg R et al (1997) Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am Rev Respir Crit Care Med 155: 1309–1315Google Scholar
  42. 42.
    Amato MBP, Barbas CSV, Medeiros D et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am Rev Respir Crit Care Med 153:A531Google Scholar
  43. 43.
    Amato MBP, Barbas CSV, Pastore L et al (1996) Minimizing barotrauma in ARDS: Protective effects of PEEP and the hazards of driving and plateau pressures. Am Rev Resp Crit Care Med 153: A375Google Scholar
  44. 44.
    Lachmann B (1992) Open up the lung and keep the lung open. Intens Care Med 18: 319–321CrossRefGoogle Scholar
  45. 45.
    Dreyfuss D, Soler P, Basset G et al (1988) Intermittent positive pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164PubMedGoogle Scholar
  46. 46.
    Gommers D, Lachmann B (1995) Surfactant therapy in the adult patient. Curr Opinion Crit Care 1: 57–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • B. Lachmann
  • S. J. C. Verbrugge

There are no affiliations available

Personalised recommendations