Iatrogenic Lung Damage by Artificial Ventilation: What Is the Role of the Pulmonary Surfactant System?

  • S. Böhm
  • G. F. Vazquez de Anda
  • B. Lachmann
Conference paper


Since its introduction for clinical routine use more than 40 years ago, artificial ventilation has proven to be a life-saving method and remains the cornerstone of modern intensive care medicine. Artificial ventilation has also remained a topic of discussion and controversy [1] because it can cause atelectasis, pulmonary edema, pneumonitis, and fibrosis [2]. To date, no adequate explanation of the pathophysiological basis of all these changes has been documented conclusively [3, 4]. However, there is increasing evidence that some of them are induced by alterations of the pulmonary surfactant system [5–10]. We speculate that impairment of the surfactant function is one of the primary causes of ventilation-induced lung injury [11].


Adult Respiratory Distress Syndrome Surfactant System Artificial Ventilation Pulmonary Surfactant Large Tidal Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slutzky A (1994) Consensus conference on mechanical ventilation-January 28–30, 1993 at Northbrook, Illinois, USA. Part I. Intensive Care Med 20: 64–79CrossRefGoogle Scholar
  2. 2.
    Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824PubMedGoogle Scholar
  3. 3.
    Seeger W, Günther A, Walmrath HD et al (1993). Alveolar surfactant and adult respiratory distress syndrome. Clin Investig 71: 177–190PubMedCrossRefGoogle Scholar
  4. 4.
    Spragg RG, Smith RM (1991) Biology of acute lung injury. In: Crystal RG, West JB (eds) The Lung: scientific foundations. Raven Press, Ltd, New York, pp 2003–2017Google Scholar
  5. 5.
    Lachmann B (1987) The role of pulmonary surfactant in the pathogenesis and therapy of ARDS. In: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 123–134Google Scholar
  6. 6.
    Tremblay NL, Slutsky AS (1997) The role of pressure and volume in ventilation induced lung injury. Appl Cardiopulm Pathophysiol 6: 179–190Google Scholar
  7. 7.
    Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 97: 517Google Scholar
  8. 8.
    Ashbaugh DG, Bingelow DB, Petty TL et al (1967) Acute respiratory distress in adults. Lancet 2: 319–323PubMedCrossRefGoogle Scholar
  9. 9.
    Hallmann M, Spragg R, Harrell JH et al (1982) Evidence of lung surfactant abnormality in respiratory failure. J Clin Invest 70: 673–683CrossRefGoogle Scholar
  10. 10.
    Gregory TJ, Longmore WJ, Moxley WJ et al (1991) Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest 88: 1976–1981PubMedCrossRefGoogle Scholar
  11. 11.
    Lachmann B, Bergmann KC, Enders K et al (1977) Können pathologische Veränderungen im Surfactant-System der Lunge zu einer akuten respiratorischen Insuffizienz beim Erwachsenen führen? In: Danzmann E (ed) Anaesthesia 77, Proceedings of the 6th Congress of the Society of Anaesthesiology and Resuscitation of the GDR. Vol 1. Soc Anesthesiol and Resuscitation of the GDR, Berlin, pp 337–353Google Scholar
  12. 12.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 118: 319–321CrossRefGoogle Scholar
  13. 13.
    Laplace PS (1798–1827) In: Traite de Mecanique Celeste, 5 vol. Crapelet, Courcier, ParisGoogle Scholar
  14. 14.
    Taskar V, John J, Evander E et al (1997) Surfactant dysfunction makes the lungs vulnerable to repetitive collapse and reexpansion. Am J Physiol 155: 313–320Google Scholar
  15. 15.
    Lachmann B (1985) Possible function of bronchial surfactant. Eur J Respir Dis 142[Suppl]: 49–61Google Scholar
  16. 16.
    Houmes RJM, Bos JAH, Lachmann B (1994) Effect of different ventilator settings on lung mechanics: with special reference to the surfactant system. Appl Cardiopulm Pathophysiol 5: 117–127Google Scholar
  17. 17.
    Lewis JF, Jobe AH (1993) Surfactant and the adult respiratory distress syndrome. Am Rev Resp Dis 147: 218–233PubMedCrossRefGoogle Scholar
  18. 18.
    Lachmann B, van Daal GJ (1992) Adult respiratory distress syndrome: Animal models. In: Robertson B, Van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 635–663Google Scholar
  19. 19.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565PubMedGoogle Scholar
  20. 20.
    Dreyfuss D, Basset G, Soler P et al (1985) Intermittent positive pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Resp Dis 132: 880–884PubMedGoogle Scholar
  21. 21.
    Dreyfuss D, Soler P, Basset G et al (1988) High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Resp Dis 137: 1159–1164PubMedGoogle Scholar
  22. 22.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203PubMedGoogle Scholar
  23. 23.
    Von Neergaard K (1929) Neue Auffassungen über einen Grundbegriff der Atemmechanik; Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Ges Exp Med 66: 373–394CrossRefGoogle Scholar
  24. 24.
    Gruenwald P (1963) A numerical index of the stability of lung expansion. J Appl Phys 34: 665–667Google Scholar
  25. 25.
    Böhm S, Lachmann B (1996) Pressure-control ventilation: Putting a mode into perspective. Int J Int Care 3: 12–27Google Scholar
  26. 26.
    Mead J, Takashima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608PubMedGoogle Scholar
  27. 27.
    Lachmann B, Danzmann E, Haendly B et al (1982) Ventilator settings and gas exchange in respiratory distress syndrome. In: Prakash O (ed) Applied Physiology in Clinical Respiratory Care. Nijhoff, The Hague, pp 141–176Google Scholar
  28. 28.
    Froese AB, McCulloch PR, Sugiura M et al (1993) Optimizing alveolar expansion prolongs the effectiveness of exogenous surfactant therapy in the adult rabbit. Am Rev Respir Dis 148: 569–577PubMedCrossRefGoogle Scholar
  29. 29.
    Greenfield LJ, Ebert PA, Benson DW (1964) Effect of positive pressure ventilation on surface tension properties of lung extracts. Anaesthesia 25: 312–316CrossRefGoogle Scholar
  30. 30.
    Faridy EE, Permutt S, Riley RL (1966) Effect of ventilation on surface forces in excised dogs’ lungs. JAppl Physiol 21: 1453–1462Google Scholar
  31. 31.
    McClenahan JB, Urtnowski A (1967) Effect of ventilation on surfactant and its turnover rate. J Appl Physiol 23: 215–220PubMedGoogle Scholar
  32. 32.
    Nicholas TE, Barr HA (1983) The release of surfactant in rat lungs by brief periods of hyperventilation. Respir Physiol 52: 69–83PubMedCrossRefGoogle Scholar
  33. 33.
    Faridy EE (1976) Effect of ventilation on movement of surfactant in airways. Respir Physiol 27: 323–334PubMedCrossRefGoogle Scholar
  34. 34.
    Forrest JB (1972) The effect of hyperventilation on pulmonary surface activity. Br J Anaesth 44: 313–319PubMedCrossRefGoogle Scholar
  35. 35.
    Faridy EE (1976) Effect of distension on release of surfactant in excised dogs’ lungs. Respir Physiol 27: 99–114PubMedCrossRefGoogle Scholar
  36. 36.
    Massaro GD, Massaro D (1983) Morphologic evidence that large inflations of the lung stimulate secretion of surfactant. Am Rev Respir Dis 127: 235–236PubMedGoogle Scholar
  37. 37.
    Veldhuizen RAW, Marcou J, Yao LJ et al (1996) Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits. Am J Physiol 270: L152–L158PubMedGoogle Scholar
  38. 38.
    Ito Y, Veldhuizen RAW, Yao LJ et al (1997) Ventilation strategies affect surfactant aggregate conversion in acute lung injury. Am Rev Respir Crit Care Med 155: 493–499Google Scholar
  39. 39.
    Seeger W, Grube C, Günther A (1993) Surfactant inhibition by plasma proteins: differential sensitivity of various surfactant preparations. Eur Resp J 6: 971–977Google Scholar
  40. 40.
    Wyszogrodski I, Kyei-Aboagye K, Taeusch Jr HW et al (1975) Surfactant inactivation by hyperinflation: conservation by end-expiratory pressure. J Appl Physiol 38: 461–466PubMedGoogle Scholar
  41. 41.
    Egan EA, Nelson RM, Olver RE (1976) Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol 260: 409–424PubMedGoogle Scholar
  42. 42.
    Egan EA (1982) Lung inflation, lung solute permeability, and alveolar edema. J Appl Physiol 53(1): 121–125PubMedGoogle Scholar
  43. 43.
    Lachmann B, Eijking EP, So KL et al (1994) In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function. Intensive Care Med 20: 6–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • S. Böhm
  • G. F. Vazquez de Anda
  • B. Lachmann

There are no affiliations available

Personalised recommendations