Barotrauma, Volume Trauma and Their Relation to FRC

  • L. Tremblay
  • A. S. Slutsky


The term barotrauma (pressure induced injury) is often used in reference to complications of mechanical ventilation involving extravasation of air from the lung (e.g., pulmonary interstitial emphysema, pneumomediastinum, subcutaneous emphysema, pneumothorax). Macklin et al. proposed that high ventilatory pressures disrupt the respiratory epithelium at the interface between the alveolar base and the vascular sheath, thereby allowing air to track along the bronchoalveolar sheaths and dissect (or break free) into the interstitial, vascular, mediastinal, peritoneal, retroperitoneal, pleural or subcutaneous spaces [1]. A number of studies have supported an association between barotrauma and high peak airway pressures, PEEP, tidal volumes, or minute ventilation [2, 3]. However, a recent prospective multivariate analysis of patients receiving mechanical ventilation for greater than 24 hours found only the presence of ARDS to correlate independently with the risk of developing pneumothorax [4]. Thus, it is possible that the association of air leaks with high ventilatory pressures noted in prior studies was a reflection of the severity of underlying lung injury (necessitating use of high pressures for ventilation), rather than an effect of the high ventilatory pressures causing the barotrauma.


Lung Injury Tidal Volume Lung Volume Peak Inspiratory Pressure Large Tidal Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macklin CC (1939) Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum. Arch Int Med 64: 913–926CrossRefGoogle Scholar
  2. 2.
    Gammon RB, Buchalter SE (1992) Pulmonary barotrauma in mechanical ventilation. Chest 102: 568–572PubMedCrossRefGoogle Scholar
  3. 3.
    Petersen GW, Baier H (1983) Incidence of pulmonary barotrauma in a medical ICU. Crit Care Med 11: 67–69PubMedCrossRefGoogle Scholar
  4. 4.
    Gammon RB, Shin MS, Groves RH Jr et al (1995) Clinical risk factors for pulmonary barotrauma: a multivariate analysis. Am J Respir Crit Care Med 152: 1235–1240PubMedGoogle Scholar
  5. 5.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565PubMedGoogle Scholar
  6. 6.
    Pierson DJ (1988) Alveolar rupture during mechanical ventilation: role of PEEP, peak airway pressure, and distending volume. Resp Care 33: 472–486Google Scholar
  7. 7.
    Kolobow T, Moretti MP, Fumagalli R et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315PubMedGoogle Scholar
  8. 8.
    Tsuno K, Miura K, Takeya M et al (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143: 1115–1120PubMedGoogle Scholar
  9. 9.
    Parker JC, Hernandez LA, Longenecker GL et al (1990) Lung edema caused by high peak inspiratory pressures in dogs. Am Rev Respir Dis 142: 321–328PubMedGoogle Scholar
  10. 10.
    Greenfield LJ, Ebert PA, Benson DW (1964) Effect of positive pressure ventilation on surface tension properties of lung extracts. Anesthesiology 25: 312–316PubMedCrossRefGoogle Scholar
  11. 11.
    Faridy EE, Permutt S, Riley RL (1966) Effect of ventilation on surface forces in excised dogs’ lungs. JAppl Physiol 21: 1453–1462Google Scholar
  12. 12.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203PubMedGoogle Scholar
  13. 13.
    Hernandez LA, Peevy KJ, Moise AA et al (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66: 2364–2368PubMedGoogle Scholar
  14. 14.
    Carlton DP, Cummings JJ, Scheerer RG et al (1990) Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69: 577–583PubMedGoogle Scholar
  15. 15.
    Dreyfuss D, Soler P, Basset G et al (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164PubMedGoogle Scholar
  16. 16.
    McClenahan J, Urtnowski A (1967) Effect of ventilation on surfactant and its turnover rate. J Appl Physiol 23: 215–220PubMedGoogle Scholar
  17. 17.
    Wyszogrodski I, Kyei-Aboagye K, Taeusch W et al (1975) Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure. J Appl Physiol 38: 461–466PubMedGoogle Scholar
  18. 18.
    Faridy EE (1976) Effect of ventilation on movement of surfactant in airways. Respir Physiol 27: 323–334PubMedCrossRefGoogle Scholar
  19. 19.
    Bshouty Z, Ali J, Younes M (1988) Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appl Physiol 64: 1900–1907PubMedGoogle Scholar
  20. 20.
    Corbridge TC, Wood LDH, Crawford GP et al (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142: 311–315PubMedGoogle Scholar
  21. 21.
    Egan EA, Nelson RM, Olver RE (1976) Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol 260: 409–424PubMedGoogle Scholar
  22. 22.
    Parker JC, Townsley MI, Rippe B et al (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 57: 1809–1816PubMedGoogle Scholar
  23. 23.
    Dreyfuss D, Basset G, Soler P et al (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884PubMedGoogle Scholar
  24. 24.
    Fu Z, Costello ML, Tsukimoto K et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73: 123–133PubMedGoogle Scholar
  25. 25.
    Argiras EP, Blakely CR, Dunnill MS et al (1987) High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59: 1278–1285PubMedCrossRefGoogle Scholar
  26. 26.
    Sandhar BK, Niblett DJ, Argiras EP et al (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538–546PubMedCrossRefGoogle Scholar
  27. 27.
    Muscedere JG, Mullen JBM, Gan K et al (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334PubMedGoogle Scholar
  28. 28.
    Hamilton PP, Onayemi A, Smyth JA et al (1983) Comparison of conventional and high-frequency ventilation: oxygenation and lung pathology. J Appl Physiol 55: 131–138PubMedGoogle Scholar
  29. 29.
    Kawano T, Mori S, Cybulsky M et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62: 27–33PubMedGoogle Scholar
  30. 30.
    Robertson B (1984) Lung surfactant. In: Robertson B, Van Golde L, Batenburg J (ed) Pulmonary surfactant. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608PubMedGoogle Scholar
  32. 32.
    Imai Y, Kawano T, Miyasaka K et al (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Critical Care Med 150: 1550–1554Google Scholar
  33. 33.
    Tremblay L, Valenza F, Ribeiro SP et al (1997) Injurious ventilatory strategies increase cytokines and c-fos M-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952PubMedCrossRefGoogle Scholar
  34. 34.
    Hernandez LA, Coker PJ, May S et al (1990) Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs. J Appl Physiol 69: 2057–2061PubMedGoogle Scholar
  35. 35.
    Dreyfuss D, Soler P, Saumon G (1995) Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med 151: 1568–1575PubMedGoogle Scholar
  36. 36.
    Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21: 131–143PubMedCrossRefGoogle Scholar
  37. 37.
    Rouby JJ, Lherm T, de Lassale EM et al (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19: 383–389PubMedCrossRefGoogle Scholar
  38. 38.
    Coker PJ, Hernandez LA, Peevy KJ et al (1992) Increased sensitivity to mechanical ventilation after surfactant inactivation in young rabbit lungs. Crit Care Med 20: 635–640PubMedCrossRefGoogle Scholar
  39. 39.
    Gattinoni L, Pesenti A, Torresin A et al (1986) Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imag 1: 25–30CrossRefGoogle Scholar
  40. 40.
    Gattinoni L, Pesenti A, Baglioni S et al (1988) Inflammatory pulmonary edema and positive end-expiratory pressure: correlation between imaging and physiologic studies. J Thorac Imag 3: 59–64CrossRefGoogle Scholar
  41. 41.
    Gattinoni L, D’Andrea L, Pelosi P et al (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269: 2122–2127PubMedCrossRefGoogle Scholar
  42. 42.
    Amato MB, Barbas CS, Filho GL et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • L. Tremblay
  • A. S. Slutsky

There are no affiliations available

Personalised recommendations