Cytokine Activity in Experimental Sepsis

  • H. Zhang
Conference paper


Septic shock can be seen as an uncontrolled, disseminated inflammatory process, triggered by an excessive release of pro-inflammatory cytokines. Cytokines are involved in the recruitment of macrophage neutrophils, endothelial cells and other cells contributing to the pathophysiology of septic shock. The current discussion will focus on the role of cytokines as mediators of septic sequelae and will briefly review the cytokine neutralizing strategies in experimental sepsis.


Tumor Necrosis Factor Septic Shock Severe Sepsis Experimental Sepsis Cytokine Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beutler B, Greenwald D, Hulmes JD et al (1985) Identity of tumor necrosis factor and the macrophage secreted factor cachectin. Nature 316: 552–554PubMedCrossRefGoogle Scholar
  2. 2.
    Tracey KJ, Beutler B, Lowry SF et al (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474PubMedCrossRefGoogle Scholar
  3. 3.
    Tracey KJ, Lowry SF, Fahey TJ et al (1987) Cachectin/tumor necrosis factor induces lethal septic shock and stress hormone responses in the dog. Surg Gynecol Obstet 164: 415–422PubMedGoogle Scholar
  4. 4.
    Nathens AB, Ding JW, Marshall JC (1994) The gut as a cytokine generating organ: small bowel TNFαproduction during systemic endotoxemia. Presented at the 14th Annual Meeting of the Surgical Infection Society. Toronto, Ontario, Canada, April 29Google Scholar
  5. 5.
    van der Poll T, Romijn JA, Endert E et al (1991) Tumor necrosis factor mimics the metabolic response to acute infection in healthy humans. Am J Physiol 261: E457–E465PubMedGoogle Scholar
  6. 6.
    Starnes HF, Warren RA, Jeevanandam M et al (1988) Tumor necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 82: 1321–1325PubMedCrossRefGoogle Scholar
  7. 7.
    van der Poll T, Buller HR, ten Cate H (1990) Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med 322: 1622–1627PubMedCrossRefGoogle Scholar
  8. 8.
    Warren RS, Starnes Jr HF, Gabrilove JL et al (1987) The acute metabolic effects of tumor necrosis factor administration in humans. Arch Surg 122: 1396–1400PubMedCrossRefGoogle Scholar
  9. 9.
    Philip R, Epstein LB (1986) Tumor necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, gamma-interferon and interleukin-l. Nature 323: 86–89PubMedCrossRefGoogle Scholar
  10. 10.
    Spinas GA, Keller U, Brockhaus M (1992) Release of soluble receptors for human necrosis factor (TNF) in relation to circulating TNF during experimental endotoxemia. J Clin Invest 90: 533–536PubMedCrossRefGoogle Scholar
  11. 11.
    Van Zee KJ, Kohno T, Fisher E et al (1992) Tumor necrosis factor soluble receptor circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor a in vitro and in vivo. Proc Natl Acad Sci USA 89: 4845–4849PubMedCrossRefGoogle Scholar
  12. 12.
    Ertel W, Scholl FA, Gallati H (1994) Increased release of soluble tumor necrosis factor receptors into blood during clinical sepsis. Arch Surg 129: 1330–1336PubMedCrossRefGoogle Scholar
  13. 13.
    Goldie AS, Fearon KC, Ross JA et al (1995) Natural cytokine antagonist and endogenous antiendotoxin core antibodies in sepsis syndrome. The sepsis intervention group. J Am Med Assoc 274: 172–177CrossRefGoogle Scholar
  14. 14.
    Fisher E, Marano MA, Barber A et al (1991) Interleukin-1 α administration can replicate the hemodynamic and metabolic responses to sublethal endotoxemia. Am J Physiol 261: R442–R452Google Scholar
  15. 15.
    Mester M, Tompkins RG, Gelfand JA (1993) Intestinal production of interleukin-lα during endotoxemia in the mouse. J Surg Res 54: 584–591PubMedCrossRefGoogle Scholar
  16. 16.
    Hogquist KA, Unanue ER, Chaplin DD (1991) Release of IL-1 from mononuclear phagocytes. J Immunol 147: 2181–2186PubMedGoogle Scholar
  17. 17.
    Seckinger P, Dayer JM (1987) Interleukin-1 inhibitors. Ann Instit Pasteur/Immunol 138: 461CrossRefGoogle Scholar
  18. 18.
    Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77: 1627–1652PubMedGoogle Scholar
  19. 19.
    Fischer E, Marano MA, Van Zee KJ et al (1992) Interleukin 1 receptor blockade improves survival and hemodynamic performance in Eschehchia coli septic shock, but fails to alter host responses to sublethal endotoxemia. J Clin Invest 89: 1551–1557PubMedCrossRefGoogle Scholar
  20. 20.
    Ohlsson K, Bjork P, Bergenfeldt M et al (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348: 550PubMedCrossRefGoogle Scholar
  21. 21.
    Kuhns DB, Alvord WG, Gallin JI (1995) Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans. J Infect Dis 171: 145–152PubMedCrossRefGoogle Scholar
  22. 22.
    Kishimoto T (1992) Interleukin-6 and its receptor: from cloning to clinic. Int Arch Allergy Immunol 99: 172–177CrossRefGoogle Scholar
  23. 23.
    Dinarello CA (1989) The endogenous pyrogens in host-defence interactions. Hosp Proct 24: 111–128Google Scholar
  24. 24.
    Hack CE, Degroot ER, Felt-Bersma RJF et al (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74: 1704–1710PubMedGoogle Scholar
  25. 25.
    Heremans H, Dillen C, Put W et al (1992) Protective effect of anti-interleukin (IL)-6 antibody against endotoxin, associated with paradoxically increased IL-6 levels. Eur J Immunol 22: 2395–2401PubMedCrossRefGoogle Scholar
  26. 26.
    Starnes HFJ, Pearce MK, Tewari A et al (1990) Anti-IL-6 monoclonal antibodies protect against lethal Escherichia coli infection and lethal tumor necrosis factor-α challenge in mice. J Immunol 145: 4185–4191PubMedGoogle Scholar
  27. 27.
    Barton BE, Jackson JV (1993) Protective role of interleukin 6 in the lipopolysaccharide-galactosamine septic shock model. Infect Immu 61: 1496–1499Google Scholar
  28. 28.
    Preiser JC, Schmartz D, Van der Linden P et al (1991) IL-6 administration has no acute hemodynamic effect in the dog. Cytokine 3: 1–4PubMedCrossRefGoogle Scholar
  29. 29.
    Dalrymple SA, Slattery R, Aud DM et al (1996) Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection. Infect Immun 64: 3231–3235PubMedGoogle Scholar
  30. 30.
    Meyer TA, Wang J, Tiao GM et al (1995) Sepsis and endotoxemia stimulate intestinal interleukin-6 production. Surgery 118: 336–342PubMedCrossRefGoogle Scholar
  31. 31.
    Ayala A, Perrin MM, Kisala JM et al (1992) Polymicrobial sepsis selectively activates peritoneal but not alveolar macrophages to release inflammatory mediators interleukins-1 and-6 and tumor necrosis factor. Circ Shock 36: 191–199PubMedGoogle Scholar
  32. 32.
    Shalaby MR, Waage A, Aarden L et al (1989) Endotoxin, tumor necrosis factor-alpha and interleukin-1 induce interleukin-6 production in vivo. Clin Immunol Immunopathol 53: 488–498PubMedCrossRefGoogle Scholar
  33. 33.
    Ziegler-Heitbrock HW, Passlick B, Kafferlein E et al (1992) Protection against lethal pneumococcal septicemia in pigs is associated with decreased levels of interleukin-6 in blood. Infect Immunol 60: 1692–1694Google Scholar
  34. 34.
    Damas P, Ledoux D, Nys M (1992) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 215: 356–362PubMedCrossRefGoogle Scholar
  35. 35.
    Hack CE, De Groot ER, Felt-Bersma RJ (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74: 1704–1710PubMedGoogle Scholar
  36. 36.
    Calandra T, Gerain J, Heumann D et al (1991) High circulating levels of interleukin-6 in patients with septic shock: Evolution during sepsis, prognostic value, and interplay with other cytokines. The Swiss-Dutch J5 Immunoglobulin Study Group. Am J Med 91: 23–29PubMedCrossRefGoogle Scholar
  37. 37.
    Fugger R, Hamilton G, Steininger R et al (1991) Intraoperative estimation of endotoxin, TNF alpha, and IL-6 in orthotopic liver transplantation and their relation to rejection and postoperative infection. Transplantation 52: 302–306PubMedCrossRefGoogle Scholar
  38. 38.
    Starnes HF Jr, Pearce MK, Tewari A et al (1990) Anti-IL-6 monoclonal antibodies protect against lethal Escherichia coli infection and lethal tumor necrosis factor-alpha challenge in mice. J Immunol 145: 4185–4191PubMedGoogle Scholar
  39. 39.
    Ayala A, Knotts JB, Ertel W et al (1993) Role of interleukin 6 and transforming growth factor-beta in the induction of depressed splenocyte responses following sepsis. Arch Surg 128: 89–94PubMedCrossRefGoogle Scholar
  40. 40.
    Blackwell TS, Christman JW (1996) Sepsis and cytokines: current status. Brit J Anaesth 77: 110–117PubMedCrossRefGoogle Scholar
  41. 41.
    Van Zee KJ, Fischer E, Hawes AS et al (1992) Effects of intravenous IL-8 administration in nonhuman primates. J Immunol 148: 1746–1752PubMedGoogle Scholar
  42. 42.
    Van Zee KJ, DeForge LE, Fisher E et al (1991) Il-8 in septic shock, endotoxemia, and after IL-1 administration. J Immunol 146: 3478–3482PubMedGoogle Scholar
  43. 43.
    Espat NJ, Cendan JC, Beierle EA et al (1995) PEG-BP-30 monotherapy attenuates the cytokine-mediated inflammatory cascade in baboon Escherichia coli septic shock. J Surg Res 59: 153–158PubMedCrossRefGoogle Scholar
  44. 44.
    Redl H, Schlag G, Ceska M et al (1993) Interleukin-8 release in baboon septicemia is partially dependent on tumor necrosis factor. J Infect Dis 167: 1464–1466PubMedCrossRefGoogle Scholar
  45. 45.
    Blackwell TS, Christman JW (1996) Sepsis and cytokines: current status. Brit J Anaesth 77: 110–117PubMedCrossRefGoogle Scholar
  46. 46.
    Marchant A, Bruyns C, Vanderbeele P et al (1994) The protective role of interleukin-10 in endotoxin shock. In: Levin J, Sander JH, van Deventer T, van der Poll AS (eds) Progress in clinical and biological research: Bacterial endotoxin: Basic science to anti-sepsis strategies. Wiley-Liss, New York, 388: 417–423Google Scholar
  47. 47.
    Gerard C, Bruyns C, Marchant A et al (1993) Interleukin-10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med 177: 547–550PubMedCrossRefGoogle Scholar
  48. 48.
    Marchant A, Deviere J, Byl B et al (1994) Interleukin-10 production during septicaemia. Lancet 343: 707–708PubMedCrossRefGoogle Scholar
  49. 49.
    van Deuren M, van der Ven-Jongekrijg J, Bartelink AKM et al (1994) Correlation between proinrlammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 172: 433–439CrossRefGoogle Scholar
  50. 50.
    D’Andrea A, Rengaraju M, Valiante NM et al (1992) Production of natural killer cell stimulatory factor (NKSF/IL-12) by peripheral blood mononuclear cells. J Exp Med 176: 1387–1390PubMedCrossRefGoogle Scholar
  51. 51.
    Gazzinelli TR, Hiney S, Wynn TA et al (1993) Interleukin-12 is required for the T-lymphocyte independent induction of interferon-γ by an intracellular parasite and induces resistance in T-deficient hosts. Proc Natl Acad Sci USA 90: 6115–6117PubMedCrossRefGoogle Scholar
  52. 52.
    Kobayashi M, Fitz L, Ryan M et al (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biological effects on human lymphocytes. J Exp Med 170: 827–831PubMedCrossRefGoogle Scholar
  53. 53.
    Chan SH, Perussia B, Gupta JW et al (1991) Induction of IFN-γ production by NK cell stimulatory factor (NKSF): Characterization of the responder cells and synergy with other inducers. J Exp Med 173: 869–873PubMedCrossRefGoogle Scholar
  54. 54.
    Gately MK, Warrier RR, Honasoge S et al (1994) Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-γ in vivo. Int Immunol 6: 157–162PubMedCrossRefGoogle Scholar
  55. 55.
    Heinzel FP, Rerko RM, Ling P et al (1994) Interleukin 12 is produced in vivo during endotoxemia and stimulates synthesis of gamma interferon. Infect Immun 62: 4244–4249PubMedGoogle Scholar
  56. 56.
    Wysocka M, Kubin M, Vieira LQ et al (1995) Interleukin-12 is required for interferon-γ production and lethality in lipopolysaccharide-induced shock in mice. Eur J Immunol 25: 672–676PubMedCrossRefGoogle Scholar
  57. 57.
    Jansen PM, van der Pouw Kraan TCTM, de Jong IW et al (1996) Release of interleukin-12 in experimental Escherichia coli septic shock in baboons: relation to plasma levels of interleukin-10 and interferon-γ. Blood 87: 5144–5151PubMedGoogle Scholar
  58. 58.
    Remick DG (1995) Applied molecular biology of sepsis. J Crit Care 10: 198–212PubMedCrossRefGoogle Scholar
  59. 59.
    Waage A, Halstensen A, Espevik T (1987) Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet 1: 355–357PubMedCrossRefGoogle Scholar
  60. 60.
    Wagge A, Brandtzaeg P, Halstensen A (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock: Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 169: 333–338CrossRefGoogle Scholar
  61. 61.
    Debets JM, Kampmeijer R, van der Li (1989) Plasma tumor necrosis factor and mortality in critically ill septic patients. Crit Care Med 17: 489–494PubMedCrossRefGoogle Scholar
  62. 62.
    Damas P, Reuter A, Gysen P (1989) Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 17: 975–978PubMedCrossRefGoogle Scholar
  63. 63.
    Calandra T, Baumgartner JD, Grau GE (1990) Prognostic values of tumor necrosis factor/ cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis 161: 982–987PubMedCrossRefGoogle Scholar
  64. 64.
    Cannon JG, Tompkins RG, Gelfand JA (1990) Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 161: 79–84PubMedCrossRefGoogle Scholar
  65. 65.
    Dofferhoff AS, Bom VJ, de Vries-Hospers HG (1992) Patterns of cytokines, plasma endotoxin, plasminogen activator inhibitor, and acute-phase proteins during the treatment of severe sepsis in humans. Crit Care Med 20: 185–192PubMedCrossRefGoogle Scholar
  66. 66.
    Endo S, Inada K, Inoue Y (1992) Two types of septic shock classified by the plasma levels of cytokines and endotoxin. Circ Shock 38: 264–274PubMedGoogle Scholar
  67. 67.
    Pinsky MR, Vincent J-L, Deviere J (1993) Serum cytokine levels in human septic shock: Relation to multiple-system organ failure and mortality. Chest 103: 565–575PubMedCrossRefGoogle Scholar
  68. 68.
    Enayani P, Fong Y (1994) Cytokine neutralizing strategies in experimental sepsis. In: Levin J, Sander JH, van Deventer T, van der Poll AS (eds) Progress in clinical and biological research: Bacterial endotoxin: Basic science to anti-sepsis strategies. Wiley-Liss, New York, 388: 295–306Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • H. Zhang

There are no affiliations available

Personalised recommendations