Advertisement

Resistance measurements. Forced oscillations and plethysmography

  • R. Peslin
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)

Abstract

Whether a subject breathes spontaneously or is artificially ventilated, the pressure which must be applied to the respiratory system to ventilate (Prs) includes two basic components: 1) a static or elastic component (Pel) to sustain the elastic recoil of the lung and chest wall, as described elsewhere in this book; 2) a dynamic or resistive component (Pres) to provide for energy losses by friction occurring in the airways and in the tissues.

Keywords

Airway Resistance Airway Wall Airway Conductance Differential Pressure Transducer Body Plethysmography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mead J, Milic-Emili J (1964) Theory and methodology in respiratory mechanics with glossary of symbols. In: Fenn WO, Rahn H (eds) Respiration. Handbook of Physiology. Vol I. American Physiological Society, Washington DC, pp 363–376Google Scholar
  2. 2.
    Fredberg JJ, Keefe DH, Glass GM, Castile RG, Frantz ID (1984) Alveolar pressure nonho- mogeneity during small-amplitude high-frequency oscillation. J Appl Physiol 57:788–800PubMedGoogle Scholar
  3. 3.
    DuBois AB, Botelho SY, Comroe JH (1956) A new method for measuring airway resistance in man using a body Plethysmograph: values in normal subjects and in patients with respiratory disease. J Clin Invest 35:327–335CrossRefGoogle Scholar
  4. 4.
    Peslin R, Jardin P, Hannhart B (1976) Modeling of the relationship between volume variations at the mouth and chest. J Appl Physiol 41:659–667PubMedGoogle Scholar
  5. 5.
    Peslin R, Duvivier C, Vassiliou M, Gallina C (1995) Thermal artifacts in Plethysmographie airway resistance measurements. J Appl Physiol 79:1958–1965PubMedGoogle Scholar
  6. 6.
    Jaeger MJ, Bouhuys A (1969) Loop formation in pressure vs. flow diagrams obtained by body plethysmography. In: Dubois AB, Van de Woestijne KP (eds) Progress in respiration research. Vol 4. Karger, Basel, pp 116–130Google Scholar
  7. 7.
    DuBois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH (1956) A rapid Plethysmographie method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest 35:322–326PubMedCrossRefGoogle Scholar
  8. 8.
    Comroe JH, Botelho SY, DuBois AB (1959) Design of a body plethysmograph for studying cardiopulmonary physiology. J Appl Physiol 14:439–444PubMedGoogle Scholar
  9. 9.
    Mead J (1960) Volume displacement plethysmograph for respiratory measurements in humans subjects. J Appl Physiol 15:736–740Google Scholar
  10. 10.
    Peslin R (1984) Body plethysmography. In: Techniques in the Life Sciences. Resp Physiol 4(14): l-26Google Scholar
  11. 11.
    Clément J, Van de Woestijne KP (1969) Pressure correction in volume and flow-dis- placement body plethysmography. J Appl Physiol 27:895–897PubMedGoogle Scholar
  12. 12.
    Stanescu DC, Pattijn J, Clément J, van de Woestijne KP (1972) Glottis opening and airway resistance. J Appl Physiol 32:460–466PubMedGoogle Scholar
  13. 13.
    Jaeger MJ, Otis AB (1964) Measurement of airway resistance with a volume displacement body plethysmograph. J Appl Physiol 19:813–820PubMedGoogle Scholar
  14. 14.
    Smidt U, Muysers K, Buchheim R (1969) Electronic compensation of differences in temperature and water vapor between inspired and expired air and other signal handling in body plethysmography. In: DuBois AB, Van de Woestijne KP (eds) Progress in respiration research. Vol 4. Karger, Basel, pp 39–49Google Scholar
  15. 15.
    Peslin R, Duvivier C, Malvestio P, Benis AB (1996) Correction of thermal artifacts in Plethysmographie airway resistance measurements. J Appl Physiol 80:2198–2203PubMedGoogle Scholar
  16. 16.
    Varène P, Vieillefond H, Saumon G, Lafosse JE (1974) Etalonnage des pneumota- chographes par méthode intégrale. Bull Physiopath Resp 10:349–360Google Scholar
  17. 17.
    Peslin R (1983) Lung mechanics II: resistance measurements. Bull Europ Physiopath Resp 19(Suppl 5):33–38Google Scholar
  18. 18.
    Stanescu DC, Rodenstein D, Caubergh M, Van de Woestijne KP (1982) Failure of body plethysmography in bronchial asthma. J Appl Physiol 52:939–948PubMedGoogle Scholar
  19. 19.
    Peslin R, Gallina C, Rotger M (1987) Methodological factors in the variability of lung volume and specific airway resistance measured by body plethysmography. Bull Eur Physiopathol Respir 23:323–327PubMedGoogle Scholar
  20. 20.
    Ulmer WT, Reichel G, Nolte D (1970) Die Lungenfunktion. Thieme Verlag, Stuttgart, pp 134–146Google Scholar
  21. 21.
    Matthys H, Orth U (1975) Comparative measurements of airway resistance. Respiration 32:121–134PubMedCrossRefGoogle Scholar
  22. 22.
    Butler J, Caro CG, Alcala R, Dubois AB (1960) Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J Clin Invest 39:584–591PubMedCrossRefGoogle Scholar
  23. 23.
    Briscoe WA, Dubois AB (1858) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37:1279–1285CrossRefGoogle Scholar
  24. 24.
    Nadel JA, Comroe JH (1961) Acute effects of inhalation of cigarette smoke on airway conductance. J Appl Physiol 16:713–716PubMedGoogle Scholar
  25. 25.
    Schmidt AM, Cohn JE (1961) Modified body Plethysmograph for study of cardiopulmonary physiology. J Appl Physiol 16:935–938PubMedGoogle Scholar
  26. 26.
    Cohn JE, Donoso HD (1963) Mechanical properties of lung in normal men over 60 years old. J Clin Invest 42:1406–1410PubMedCrossRefGoogle Scholar
  27. 27.
    Pelzer AM, Thompson ML (1966) Effect of age, sex, stature and smoking habits on human airway conductance. J Appl Physiol 21:469–476PubMedGoogle Scholar
  28. 28.
    Mitchell M, Watanabe S, Renzetti AD (1967) Evaluation of airway conductance in normal subjects and patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 96:685–691PubMedGoogle Scholar
  29. 29.
    Amrein R, Keller R, Joos H, Herzog H (1970) Valeurs théoriques nouvelles de Fexplo- ration de la fonction ventilatoire du poumon. Bull Physiopath Resp 6:317–349Google Scholar
  30. 30.
    Tammeling GJ, Quanjer PH (1980) Contours of breathing. Boehringer, Ingelheim, pp 202–205Google Scholar
  31. 31.
    DuBois AB, Brody AW, Lewis DH, Burgess BE (1956) Oscillation mechanics of lung and chest in man. J Appl Physiol 8:587–594Google Scholar
  32. 32.
    Gayrard P, Orehek LJ, Grimaud C, Charpin J (1975) Bronchoconstrictor effects of a deep inspiration in patients with asthma. Am Rev Respir Dis 111:433–439PubMedGoogle Scholar
  33. 33.
    Peslin R, Saunier C, Gallina C, Duvivier C (1994) Small-amplitude pressure oscillations do not modify respiratory mechanics in rabbits. J Appl Physiol 76:1011–1013PubMedGoogle Scholar
  34. 34.
    Solymar L, Aronsson PH, Engstrom I, Bake B, Bjure J (1984) Forced oscillation technique and maximum expiratory flows in bronchial provocation tests in children. Eur J Respir Dis 65:486–495PubMedGoogle Scholar
  35. 35.
    Duiverman EJ, Neijens HJ, Van der Sneevan Smaalen M, Kerrebibn KF (1986) Comparison of forced oscillometry and forced expirations for measuring dose-related responses to inhaled methacholine in asthmatic children. Bull Europ Physiopath Respir 22:433–436Google Scholar
  36. 36.
    Marchal F, Mazurek H, Habib M, Duvivier C, Derelle J, Peslin R (1994) Input respiratory impedance to estimate airway hyperreactivity in children: standard method versus head generator. Eur Respir J 7:601–607PubMedCrossRefGoogle Scholar
  37. 37.
    Bouaziz N, Beyaert C, Gauthier R, Monin P, Peslin R, Marchal F (1996) Respiratory system reactance as an indicator of the intrathoracic airway response to methacholine in children. Pediatr Pulmonol 22:7–13PubMedCrossRefGoogle Scholar
  38. 38.
    Otis AB, McKerrow CB, Bartlett RA, Mead J, Mcllroy MB, Selverstone NJ, Radford EP (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443PubMedGoogle Scholar
  39. 39.
    Mead J (1969) Contribution of compliance of airways to frequency-dependent behavior in the lungs. J Appl Physiol 26:670–673PubMedGoogle Scholar
  40. 40.
    McCall CB, Hyatt RE, Noble FW, Fry DL (1957) Harmonic content of certain respiratory flow phenomena in normal individuals. J Appl Physiol 10:215–218PubMedGoogle Scholar
  41. 41.
    Peslin R, Fredberg JJ (1986) Oscillation mechanics of the respiratory system. In: Macklem PT, Mead J (eds) The respiratory system. Mechanics of breathing. Handbook of Physiology. Vol 111. American Physiological Society, Bethesda, pp 145–178Google Scholar
  42. 42.
    Dorkin HL, Lutchen KR, Jackson AC (1988) Human respiratory input impedance from 4 to 200 Hz: physiological and modeling considerations. J Appl Physiol 64:823–831PubMedGoogle Scholar
  43. 43.
    Grimby G, Takishima T, Graham W, Macklem P, Mead J (1968) Frequency dependence of flow resistance in patients with obstructive lung disease. J Clin Invest 47:1455–1465PubMedCrossRefGoogle Scholar
  44. 44.
    Farré R, Peslin R, Navajas D, Gallina C, Suki B (1989) Analysis of the dynamic characteristics of pressure transducers for studying respiratory mechanics at high frequencies. Med Biol Eng Comput 27:531–537PubMedCrossRefGoogle Scholar
  45. 45.
    Peslin R, Morinet-Lambert J, Duvivier C (1972) Etude de la reponse en fréquence de pneumotachographes. Bull Physiopath Respir 8:1363–1376Google Scholar
  46. 46.
    Peslin R, Jardin P, Duvivier C, Begin P (1984) In-phase rejection requirements for measuring respiratory input impedance. J Appl Physiol 56:804–809PubMedGoogle Scholar
  47. 47.
    Farré R, Navajas D, Peslin R, Rotger M, Duvivier C (1989) A correction procedure for the asymmetry of differential pressure transducers in respiratory impedance measurements. IEEE Trans BME 36:1137–1140CrossRefGoogle Scholar
  48. 48.
    Cauberghs M, Van de Woestijne KP (1983) Mechanical properties of the upper airway. J Appl Physiol 55:335–342PubMedGoogle Scholar
  49. 49.
    Van de Woestijne KP, Desager KN, Duiverman EJ, Marchal F (1994) Recommendations for measurement of respiratory input impedance by means of the forced oscillation method. Eur Respir Rev 4:235–237Google Scholar
  50. 50.
    Peslin R, Ying Y, Gallina C, Duvivier C (1992) Within-breath variations of forced oscillation resistance in healthy subjects. Eur Respir J 5:86–93PubMedGoogle Scholar
  51. 51.
    Michaelson ED, Grassman ED, Peters WR (1975) Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest 56:1210–1230PubMedCrossRefGoogle Scholar
  52. 52.
    Landser FJ, Clément J, Van de Woestijne KP (1982) Normal values of total respiratory resistance and reactance determined by forced oscillations. Influence of smoking. Chest 81:586–591PubMedCrossRefGoogle Scholar
  53. 53.
    Daroczy B, Fabula A, Hantos Z (1991) Use of noninteger-multiple pseudorandom excitation to minimize nonlinear effects on impedance estimation. Eur Respir Rev 1:183–187Google Scholar
  54. 54.
    Peslin R, Duvivier C, Gallina C, Cervantes P (1985) Upper airway artefact in respiratory impedance measurements. Am Rev Respir Dis 132:712–714PubMedGoogle Scholar
  55. 55.
    Peslin R, Duvivier C, Jardin P (1984) Upper airway walls impedance measured with head plethysmograph. J Appl Physiol 57:596–600PubMedGoogle Scholar
  56. 56.
    Peslin R, Duvivier C, Didelon J, Gallina C (1985) Respiratory impedance measured with head generator to minimize upper airway shunt. J Appl Physiol 59:1790–1795PubMedGoogle Scholar
  57. 57.
    Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. IEEE Trans BME 66:51–83Google Scholar
  58. 58.
    Navajas D, Farré R, Rotger M, Peslin R (1988) A new estimator to minimize the error due to breathing in the measurement of respiratory impedance. IEEE Trans BME 35:1001–1005CrossRefGoogle Scholar
  59. 59.
    Ying Y, Peslin R, Duvivier C, Gallina C, Felicio da Silva J (1990) Respiratory input and transfer mechanical impedances in patients with chronic obstructive pulmonary disease. Eur Respir J 3:1186–1192PubMedGoogle Scholar
  60. 60.
    Lorino AM, Zerah F, Mariette C, Harf A, Lorino H (1997) Respiratory resistive impedance in obstructive patients: linear regression analysis vs viscoelastic modelling. Eur Respir J 10:150–155PubMedCrossRefGoogle Scholar
  61. 61.
    Pasker HG, Mertens I, Clément J, Van de Woestijne KP (1994) Normal values of total respiratory input resistance and reactance for adult men and women. Eur Respir Rev 4:134–137Google Scholar
  62. 62.
    Peslin R, Teculescu D, Locuty J, Gallina C, Duvivier C (1994) Normal values of total respiratory input impedance with the head generator technique. Eur Respir Rev 4:138–142Google Scholar
  63. 63.
    Hantos Z, Daroczy D, Gyurkovits K (1985) Total respiratory impedance in healthy children. Pediatr Pulmonol 1:91–98PubMedCrossRefGoogle Scholar
  64. 64.
    Hordvik NL, König P, Morris DA, Kreutz C, Pimmel RL (1985) Normal values for forced oscillatory respiratory resistance in children. Pediatr Pulmonol 1:145–148PubMedCrossRefGoogle Scholar
  65. 65.
    Peslin R, Duvivier C (1998) Partitioning of airway and respiratory tissue mechanical impedances by body plethysmography. J Appl Physiol 84:553–561PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • R. Peslin

There are no affiliations available

Personalised recommendations