Respiratory mechanics during the long-term artificial ventilation

  • M. Cereda
  • A. Pesenti
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)


Respiratory mechanics alterations during acute lung injury (ALI) are mainly ascribed to changes in pulmonary tissue structure. In the initial stages, interstitial edema and alveolar collapse predominate [1]. Tissue healing and a relatively rapid clinical improvement may follow in some patients. A subpopulation of ALI patients does not improve and needs mechanical ventilatory support for an extended time. In these patients, the pathological picture may evolve, and lung tissue reorganization phenomena may prevail over edema and atelectasis [2].


Acute Lung Injury Acute Respiratory Distress Syndrome Adult Respiratory Distress Syndrome Respiratory Mechanic Lung Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tomashefski JF (1990) Pulmonary pathology of the adult respiratory distress syndrome. Clin Chest Med 11:581–592Google Scholar
  2. 2.
    Pratt PC, Vollmer RT, Shellburne JD, Crapo JD (1979) Pulmonary morphology in a multihospital collaborative extracorporeal membrane oxygenation projects. Light microscopy. Am J Pathol 95:191–214PubMedGoogle Scholar
  3. 3.
    Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) The total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66PubMedCrossRefGoogle Scholar
  4. 4.
    Gattinoni L, Bombino M, Lissoni A, Pesenti A, Fumagalli R, Tagliabue M (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 271:1772–1779PubMedCrossRefGoogle Scholar
  5. 5.
    Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R, Marcolin R, Mascheroni D, Torresin A (1988) Relationships between lung computed tomographic densities, gas exchange, and PEEP in adult respiratory failure. Anesthesiology 69:824–832PubMedCrossRefGoogle Scholar
  6. 6.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Grit Care Med 151:1807–1814Google Scholar
  7. 7.
    Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure/volume curve of total respiratory system in acute respiratory failure: computerized tomographic scan study Am Rev Respir Dis 136:730–736PubMedCrossRefGoogle Scholar
  8. 8.
    Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269:2122–2127PubMedCrossRefGoogle Scholar
  9. 9.
    Meduri GU, Kohier G, Headley S, Tolley E, Stentz F, Postlethwaite A (1995) Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108:1303–1314PubMedCrossRefGoogle Scholar
  10. 10.
    Holzapfel L, Robert D, Perrin F, Blanc PL, Palmier B, Guerin C (1983) Static pressure- volume curves and effect of positive end-expiratory pressure on gas exchange in adult respiratory distress syndrome. Grit Care Med 11:591–597CrossRefGoogle Scholar
  11. 11.
    Kolobow T, Moretti MP, Fumagalli R, Mascheroni D, Prato P, Chen V, Joris M (1987) Severe impairment in lung function induced by by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 135:312–315PubMedGoogle Scholar
  12. 12.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory airway pressure. Am Rev Respir Dis 137:1159–1164PubMedGoogle Scholar
  13. 13.
    Muscedere JG, Mullen JBM, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Grit Care Med 149:1327–1334Google Scholar
  14. 14.
    West JB, Tsukimoto K, Matieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742PubMedGoogle Scholar
  15. 15.
    Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high airway pressures. J Appl Physiol 57:1809–1816PubMedGoogle Scholar
  16. 16.
    Rouby JJ, Lherm T, Martin de Lassale E, Poete P, Bodin L, Finet JF, Callard P, Viars P (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19:383–389PubMedCrossRefGoogle Scholar
  17. 17.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321PubMedCrossRefGoogle Scholar
  18. 18.
    Stewart TE, Meade MO, Cook DJ, Granton JT, Hodder RV, Lapinsky SE, Mazer DC, McLean RF, Rogovein TS, Schouten BD, Todd TRJ, Slutsky AS 1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure and Volume-limited Ventilation Strategy Group. N Engl J Med 338:355–361PubMedCrossRefGoogle Scholar
  19. 19.
    Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GPP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CRR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • M. Cereda
  • A. Pesenti

There are no affiliations available

Personalised recommendations