How the diaphragm works in respiratory disease

  • N. B. Pride
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)


The strength of the diaphragm may be reduced by a wide range of primary neurological or muscular diseases and, more subtly, by endocrine or metabolic disorders including many acute abnormalities that may develop in critically ill patients. In respiratory disease, the major problem is usually not loss of strength but impairment of mechanical action of the diaphragm. The commonest cause of impaired diaphragm function is the symmetrical hyperinflation of chronic obstructive pulmonary disease (COPD) and acute, severe asthma. Diaphragmlung coupling is also impaired by deformity of the chest wall (i.e., kyphoscoliosis, thoracoplasty) or pleural disease (i.e., pneumothorax, pleural effusion, fibrosis). Of course with advanced chronic respiratory disease, true weakness and loss of muscle strength may develop due to cachexia, metabolic abnormalities [1] or glucocorticosteroid treatment [2].


Chronic Obstructive Pulmonary Disease Chronic Obstructive Pulmonary Disease Patient Respir Crit Inspiratory Muscle Tidal Breathing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeTroyer A, Pride NB (1995) The ehest wall and respiratory muscles in chronic obstructive pulmonary disease. In: Roussos C (ed) The Thorax, 2nd ed. Dekker, New York,pp 1975–2006Google Scholar
  2. 2.
    Decramer M, Lacquet LM, Fagard R, Rogiers P (1994) Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Grit Care Med 150:11–16Google Scholar
  3. 3.
    Cohen E, Mier A, Heywood P, Murphy K, Boultbee J, Guz A (1994) Diaphragmatic movement in hemiplegic patients measured by ultrasonography. Thorax 49:890–895PubMedCrossRefGoogle Scholar
  4. 4.
    McKenzie DK, Gorman RB, Pride NB, Tolman JF, Gandevia SC (1998) Diaphragm contribution to tidal volume in patients with severe chronic airflow limitation. Am J Resp Grit Care Med 157:A359.Google Scholar
  5. 5.
    Gandevia SC, Leeper JB, McKenzie DK, De Troyer A (1996) Discharge frequencies of parasternal intercostal and scalene motor units during breathing in normal and COPD subjects. Am J Respir Grit Care Med 153:622–628Google Scholar
  6. 6.
    De Troyer A, Leeper JB, McKenzie DK, Gandevia SC (1997) Neural drive to the diaphragm in patients with severe COPD. Am J Respir Grit Care Med 155:1335–1340Google Scholar
  7. 7.
    Levine S, Gillen M, Weiser P, Feiss G, Goldman M, Henson D (1988) Inspiratory pressure generation: comparison of subjects with COPD and age-matched normals. J Appl Physiol 65:888–899PubMedGoogle Scholar
  8. 8.
    Martinez FJ, Couser JL, Celli BR (1990) Factors influencing ventilatory muscle recruitment in patients with chronic airflow obstruction. Am Rev Respir Dis 142:276–282PubMedGoogle Scholar
  9. 9.
    De Troyer A, Peche R, Yernault J-C, Estenne M (1994) Neck muscle activity in patients with severe chronic obstructive pulmonary disease. Am J Respir Grit Care Med 150:41–47Google Scholar
  10. 10.
    Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923PubMedCrossRefGoogle Scholar
  11. 11.
    Polkey MI, Kyroussis D, Hamnegärd C-H, Mills GH, Green M, Moxham J (1996) Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Grit Care Med 154:1310–1317Google Scholar
  12. 12.
    Rochester DF, Braun NMT (1985) Determinants of maximal inspiratory pressure in chronic obstructive pulmonary disease. Am Rev Respir Dis 132:42–47PubMedGoogle Scholar
  13. 13.
    Farkas GA, Roussos C (1983) Diaphragm in emphysematous hamsters: sarcomere adaptability J Appl Physiol 54:1635–1640PubMedGoogle Scholar
  14. 14.
    Bellemare F, Grassino A (1982) Effects of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol Respirat Environ: Exercise Physiol 53:1190–1195Google Scholar
  15. 15.
    Bellemare F, Grassino A (1983) Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease. J Appl Physiol 55:8–15PubMedGoogle Scholar
  16. 16.
    Esau SA, Bellemare F, Grassino A, Permutt S, Roussos C, Pardy RL (1983) Changes in relaxation rate with diaphragmatic fatigue in humans. J Appl Physiol 54:1353–1360PubMedGoogle Scholar
  17. 17.
    Newell SZ, McKenzie DK, Gandevia SC (1989) Inspiratory and skeletal muscle strength and endurance and diaphragmatic activation in patients with chronic airflow limitation. Thorax 44:903–912PubMedCrossRefGoogle Scholar
  18. 18.
    Polkey MI, Kyroussis D, Hamnegärd C-H, Mills GH, Hughes PD, Green M, Moxham J (1997) Diaphragm performance during maximal voluntary ventilation in chronic obstructive pulmonary disease. Am J Respir Grit Care Med 155:642–648Google Scholar
  19. 19.
    Kyroussis D, Polkey MI, Keilty SEJ, Mills GH, Hamnegärd CH, Moxham J, Green M (1996) Exhaustive exercise slows inspiratory muscle relaxation rate in chronic obstructive pulmonary disease. Am J Grit Care Med 153:787–793Google Scholar
  20. 20.
    Polkey MI, Kyroussis D, Keilty SEJ, Hamnegärd CH, Mills GH, Green M, Moxham J (1995)Exhaustive treadmill exercise does not reduce twitch transdiaphragmatic pressure in patients with GOPD. Am J Respir Grit Gare Med 152:959–964Google Scholar
  21. 21.
    Mulvey DA, Koulouris NG, Elliott MW, Laroche GM, Moxham J, Green M (1991) Inspiratory muscle relaxation rate after voluntary maximal isocapnic ventilation in humans. J Appl Physiol 70:2173–2180PubMedCrossRefGoogle Scholar
  22. 22.
    Hamnegard GH, Wragg S, Kyroussis D, Mills GH, Polkey MI, Moran J, Road J, Bake B, Green M, Moxham J (1996) Diaphragm fatigue following maximal ventilation in man. Eur Respir J 9:241–247PubMedCrossRefGoogle Scholar
  23. 23.
    Freedman S (1970) Sustained maximum voluntary ventilation. Respir Physiol 8:230–244PubMedCrossRefGoogle Scholar
  24. 24.
    Arora NS, Rochester DF (1987) GOPD and human diaphragm muscle dimensions. Ghest 91:719–724Google Scholar
  25. 25.
    Ueki J, Obata K, Takahashi H, Dambara T, Fukuchi Y (1998) Assessment of the unevenness in diaphragm thickness in patients with chronic moderate to severe pulmonary emphysema by using ultrasound. Am J Resp Grit Gare Med 157:A666Google Scholar
  26. 26.
    Teschler H, Stamatis G, Farhat AA, El-Raouf F, Meyer FJ, Gostabel U, Konietzko N (1996)Effect of surgical lung volume reduction on respiratory muscle function in pulmonary emphysema. Eur Respir J 9:1779–1784PubMedCrossRefGoogle Scholar
  27. 27.
    Martinez FJ, Montes de Oca M, Whyte RI, Stetz K, Gay SE, Gelli BR (1997) Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function. Am J Respir Grit Gare Med 155:1984–1990Google Scholar
  28. 28.
    Laghi F, Jubran A, Topeli A, Fahey PJ, Garrity ER Jr, Arcidi JM, de Pinto DJ, Edwards LG, Tobin MJ (1998) Effect of lung volume reduction surgery on neuromechanical coupling of the diaphragm. Am J Respir Grit Gare Med 157:475–483Google Scholar
  29. 29.
    Levine S, Kaiser L, Leferovich J, Tikunov B (1997) Gellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 337:1799–1806PubMedCrossRefGoogle Scholar
  30. 30.
    Goldstone JG, Green M, Moxham J (1994) Maximum relaxation rate of the diaphragm during weaning from mechanical ventilation. Thorax 49:54–60PubMedCrossRefGoogle Scholar
  31. 31.
    McKenzie DK, Gandevia SG (1986) Strength and endurance of inspiratory, expiratory and limb muscles in asthma. Am Rev Respir Dis 134:999–1004PubMedGoogle Scholar
  32. 32.
    Gorman RB, McKenzie DK, Gandevia SG, Plassman BL (1992) Inspiratory muscle strength and endurance during hyperinflation and histamine induced bronchocon- striction. Thorax 47:922–792PubMedCrossRefGoogle Scholar
  33. 33.
    Picado G, Fiz JA, Montserrat JM, Grau JM, Fernandez-Sola J, Luengo MT, Gasademont J, Agusti-Vidal A (1990) Respiratory and skeletal muscle function in steroid-dependent bronchial asthma. Am Rev Respir Dis 141:14–21PubMedGoogle Scholar
  34. 34.
    Perez T, Becquart L-A, Stach B, Wallaert B, Tonnel A-B (1996) Inspiratory muscle strength and endurance in steroid-dependent asthma. Am J Respir Grit Gare Med 153:610–615Google Scholar
  35. 35.
    De Bruin PF, Ueki J, Watson A, Pride NB (1997) Size and strength of the respiratory and quadriceps muscles in patients with chronic asthma. Eur Respir J 10:59–64PubMedCrossRefGoogle Scholar
  36. 36.
    Allen GM, McKenzie DK, Gandevia SG, Bass S (1993) Reduced voluntary drive to breathe in asthmatic subjects. Respir Physiol 93:29–40PubMedCrossRefGoogle Scholar
  37. 37.
    Allen GM, Hickie I, Gandevia SG, McKenzie DK (1994) Impaired voluntary drive to breathe: a possible link between depression and unexplained ventilatory failure in asthmatic patients. Thorax 49:881–884PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • N. B. Pride

There are no affiliations available

Personalised recommendations