Skip to main content

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

  • 297 Accesses

Abstract

The strength of the diaphragm may be reduced by a wide range of primary neurological or muscular diseases and, more subtly, by endocrine or metabolic disorders including many acute abnormalities that may develop in critically ill patients. In respiratory disease, the major problem is usually not loss of strength but impairment of mechanical action of the diaphragm. The commonest cause of impaired diaphragm function is the symmetrical hyperinflation of chronic obstructive pulmonary disease (COPD) and acute, severe asthma. Diaphragmlung coupling is also impaired by deformity of the chest wall (i.e., kyphoscoliosis, thoracoplasty) or pleural disease (i.e., pneumothorax, pleural effusion, fibrosis). Of course with advanced chronic respiratory disease, true weakness and loss of muscle strength may develop due to cachexia, metabolic abnormalities [1] or glucocorticosteroid treatment [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeTroyer A, Pride NB (1995) The ehest wall and respiratory muscles in chronic obstructive pulmonary disease. In: Roussos C (ed) The Thorax, 2nd ed. Dekker, New York,pp 1975–2006

    Google Scholar 

  2. Decramer M, Lacquet LM, Fagard R, Rogiers P (1994) Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Grit Care Med 150:11–16

    CAS  Google Scholar 

  3. Cohen E, Mier A, Heywood P, Murphy K, Boultbee J, Guz A (1994) Diaphragmatic movement in hemiplegic patients measured by ultrasonography. Thorax 49:890–895

    Article  PubMed  CAS  Google Scholar 

  4. McKenzie DK, Gorman RB, Pride NB, Tolman JF, Gandevia SC (1998) Diaphragm contribution to tidal volume in patients with severe chronic airflow limitation. Am J Resp Grit Care Med 157:A359.

    Google Scholar 

  5. Gandevia SC, Leeper JB, McKenzie DK, De Troyer A (1996) Discharge frequencies of parasternal intercostal and scalene motor units during breathing in normal and COPD subjects. Am J Respir Grit Care Med 153:622–628

    CAS  Google Scholar 

  6. De Troyer A, Leeper JB, McKenzie DK, Gandevia SC (1997) Neural drive to the diaphragm in patients with severe COPD. Am J Respir Grit Care Med 155:1335–1340

    Google Scholar 

  7. Levine S, Gillen M, Weiser P, Feiss G, Goldman M, Henson D (1988) Inspiratory pressure generation: comparison of subjects with COPD and age-matched normals. J Appl Physiol 65:888–899

    PubMed  CAS  Google Scholar 

  8. Martinez FJ, Couser JL, Celli BR (1990) Factors influencing ventilatory muscle recruitment in patients with chronic airflow obstruction. Am Rev Respir Dis 142:276–282

    PubMed  CAS  Google Scholar 

  9. De Troyer A, Peche R, Yernault J-C, Estenne M (1994) Neck muscle activity in patients with severe chronic obstructive pulmonary disease. Am J Respir Grit Care Med 150:41–47

    Google Scholar 

  10. Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923

    Article  PubMed  CAS  Google Scholar 

  11. Polkey MI, Kyroussis D, Hamnegärd C-H, Mills GH, Green M, Moxham J (1996) Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Grit Care Med 154:1310–1317

    CAS  Google Scholar 

  12. Rochester DF, Braun NMT (1985) Determinants of maximal inspiratory pressure in chronic obstructive pulmonary disease. Am Rev Respir Dis 132:42–47

    PubMed  CAS  Google Scholar 

  13. Farkas GA, Roussos C (1983) Diaphragm in emphysematous hamsters: sarcomere adaptability J Appl Physiol 54:1635–1640

    PubMed  CAS  Google Scholar 

  14. Bellemare F, Grassino A (1982) Effects of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol Respirat Environ: Exercise Physiol 53:1190–1195

    CAS  Google Scholar 

  15. Bellemare F, Grassino A (1983) Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease. J Appl Physiol 55:8–15

    PubMed  CAS  Google Scholar 

  16. Esau SA, Bellemare F, Grassino A, Permutt S, Roussos C, Pardy RL (1983) Changes in relaxation rate with diaphragmatic fatigue in humans. J Appl Physiol 54:1353–1360

    PubMed  CAS  Google Scholar 

  17. Newell SZ, McKenzie DK, Gandevia SC (1989) Inspiratory and skeletal muscle strength and endurance and diaphragmatic activation in patients with chronic airflow limitation. Thorax 44:903–912

    Article  PubMed  CAS  Google Scholar 

  18. Polkey MI, Kyroussis D, Hamnegärd C-H, Mills GH, Hughes PD, Green M, Moxham J (1997) Diaphragm performance during maximal voluntary ventilation in chronic obstructive pulmonary disease. Am J Respir Grit Care Med 155:642–648

    CAS  Google Scholar 

  19. Kyroussis D, Polkey MI, Keilty SEJ, Mills GH, Hamnegärd CH, Moxham J, Green M (1996) Exhaustive exercise slows inspiratory muscle relaxation rate in chronic obstructive pulmonary disease. Am J Grit Care Med 153:787–793

    CAS  Google Scholar 

  20. Polkey MI, Kyroussis D, Keilty SEJ, Hamnegärd CH, Mills GH, Green M, Moxham J (1995)Exhaustive treadmill exercise does not reduce twitch transdiaphragmatic pressure in patients with GOPD. Am J Respir Grit Gare Med 152:959–964

    CAS  Google Scholar 

  21. Mulvey DA, Koulouris NG, Elliott MW, Laroche GM, Moxham J, Green M (1991) Inspiratory muscle relaxation rate after voluntary maximal isocapnic ventilation in humans. J Appl Physiol 70:2173–2180

    Article  PubMed  CAS  Google Scholar 

  22. Hamnegard GH, Wragg S, Kyroussis D, Mills GH, Polkey MI, Moran J, Road J, Bake B, Green M, Moxham J (1996) Diaphragm fatigue following maximal ventilation in man. Eur Respir J 9:241–247

    Article  PubMed  CAS  Google Scholar 

  23. Freedman S (1970) Sustained maximum voluntary ventilation. Respir Physiol 8:230–244

    Article  PubMed  CAS  Google Scholar 

  24. Arora NS, Rochester DF (1987) GOPD and human diaphragm muscle dimensions. Ghest 91:719–724

    CAS  Google Scholar 

  25. Ueki J, Obata K, Takahashi H, Dambara T, Fukuchi Y (1998) Assessment of the unevenness in diaphragm thickness in patients with chronic moderate to severe pulmonary emphysema by using ultrasound. Am J Resp Grit Gare Med 157:A666

    Google Scholar 

  26. Teschler H, Stamatis G, Farhat AA, El-Raouf F, Meyer FJ, Gostabel U, Konietzko N (1996)Effect of surgical lung volume reduction on respiratory muscle function in pulmonary emphysema. Eur Respir J 9:1779–1784

    Article  PubMed  CAS  Google Scholar 

  27. Martinez FJ, Montes de Oca M, Whyte RI, Stetz K, Gay SE, Gelli BR (1997) Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function. Am J Respir Grit Gare Med 155:1984–1990

    CAS  Google Scholar 

  28. Laghi F, Jubran A, Topeli A, Fahey PJ, Garrity ER Jr, Arcidi JM, de Pinto DJ, Edwards LG, Tobin MJ (1998) Effect of lung volume reduction surgery on neuromechanical coupling of the diaphragm. Am J Respir Grit Gare Med 157:475–483

    CAS  Google Scholar 

  29. Levine S, Kaiser L, Leferovich J, Tikunov B (1997) Gellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 337:1799–1806

    Article  PubMed  CAS  Google Scholar 

  30. Goldstone JG, Green M, Moxham J (1994) Maximum relaxation rate of the diaphragm during weaning from mechanical ventilation. Thorax 49:54–60

    Article  PubMed  CAS  Google Scholar 

  31. McKenzie DK, Gandevia SG (1986) Strength and endurance of inspiratory, expiratory and limb muscles in asthma. Am Rev Respir Dis 134:999–1004

    PubMed  CAS  Google Scholar 

  32. Gorman RB, McKenzie DK, Gandevia SG, Plassman BL (1992) Inspiratory muscle strength and endurance during hyperinflation and histamine induced bronchocon- striction. Thorax 47:922–792

    Article  PubMed  CAS  Google Scholar 

  33. Picado G, Fiz JA, Montserrat JM, Grau JM, Fernandez-Sola J, Luengo MT, Gasademont J, Agusti-Vidal A (1990) Respiratory and skeletal muscle function in steroid-dependent bronchial asthma. Am Rev Respir Dis 141:14–21

    PubMed  CAS  Google Scholar 

  34. Perez T, Becquart L-A, Stach B, Wallaert B, Tonnel A-B (1996) Inspiratory muscle strength and endurance in steroid-dependent asthma. Am J Respir Grit Gare Med 153:610–615

    CAS  Google Scholar 

  35. De Bruin PF, Ueki J, Watson A, Pride NB (1997) Size and strength of the respiratory and quadriceps muscles in patients with chronic asthma. Eur Respir J 10:59–64

    Article  PubMed  Google Scholar 

  36. Allen GM, McKenzie DK, Gandevia SG, Bass S (1993) Reduced voluntary drive to breathe in asthmatic subjects. Respir Physiol 93:29–40

    Article  PubMed  CAS  Google Scholar 

  37. Allen GM, Hickie I, Gandevia SG, McKenzie DK (1994) Impaired voluntary drive to breathe: a possible link between depression and unexplained ventilatory failure in asthmatic patients. Thorax 49:881–884

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Pride, N.B. (1999). How the diaphragm works in respiratory disease. In: Milic-Emili, J., Lucangelo, U., Pesenti, A., Zin, W.A. (eds) Basics of Respiratory Mechanics and Artificial Ventilation. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2273-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2273-7_13

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0046-9

  • Online ISBN: 978-88-470-2273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics