Alveolar micromechanics

  • P. V. Romero
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)


The mechanical behavior of the air spaces in the periphery of the lung is the result of a delicate balance of forces acting on the tissue scaffold of lung parenchyma. Static and dynamic properties of such a complex system have been an important field of research for many years. Alveolar space micromechanics have important physiological implications in terms of mechanical interdependence, alveolar stability, and the maintenance of a gas exchanging surface in constant contact with air. The mechanical behavior of such system has to allow the expansion of the alveolar surface at physiological rates at a low energy cost, and without interfering with the exchange process. I will describe how the structure and mechanics of the alveolar space are particularly optimized to reach these goals.


Lung Tissue Elastic Fiber Alveolar Surface Recoil Pressure Alveolar Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilson TA (1981) The relations among recoil pressure, surface area and surface tension in the lung. J Appl Physiol Respirat Environ Exercise Physiol 50:921–926Google Scholar
  2. 2.
    Mead J (1961) Mechanical properties of lungs. Physiol Rev 41:281–330PubMedGoogle Scholar
  3. 3.
    Schürch S, Bachofen H, Weibel ER (1985) Alveolar surface tensions in excised rabbit lungs: effects of temperature. Respir Physiol 62:31–45PubMedCrossRefGoogle Scholar
  4. 4.
    Bachofen H, Wilson TA (1991) Micromechanics of the acinus and the alveolar wall. In: Crystal RG, West JB et al (eds) The Lung: scientific foundations. Vol. I. Raven Press, New York, pp 809–819Google Scholar
  5. 5.
    Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175:1125–1127PubMedCrossRefGoogle Scholar
  6. 6.
    Von Neergard K (1929) Neue Auffassungen über einen Grundbegriff der Atemmechanik: Die Retraktionskraft der Lunge, Abhangig von der Oberflächensprannung in den Alveolen. Z Gesamte Exp Med 66:373–394CrossRefGoogle Scholar
  7. 7.
    Hoppin FG, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering aspects of the lung. Marcel Dekker, New York, pp 83–157Google Scholar
  8. 8.
    Schiirch S, Goerke J, Clements JA (1976) Direct determination of surface tension in the lung. Proc Natl Acad Sei 73:4698–4702CrossRefGoogle Scholar
  9. 9.
    Schiirch S, Bachofen H, Goerke J, Possmayer F (1989) A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J Appl Physiol 67:2389–2396Google Scholar
  10. 10.
    Wilson TA, Bachofen H (1982) A model of mechanical structure of alveolar duct. J Appl Physiol 53:1512–1520PubMedGoogle Scholar
  11. 11.
    Smith JC, Stamenovic D (1986) Surface forces in the lungs. I Alveolar surface tension- lung volume relationships. J Appl Physiol 60:1341–1350PubMedGoogle Scholar
  12. 12.
    Setnikar I, Meschia G (1952) Propieta elastiche del polmone e di modelli meccaniche. Arch Eisiol 52:288–302Google Scholar
  13. 13.
    Karlinsky JB, Snyder GL, Franzlau C, Stone PJ, Hoppin FG Jr (1960) In vitro effects of elastase and collagenase on mechanical properties of hamster lungs. Am Rev Respir Dis 82:186–194Google Scholar
  14. 14.
    Moretto A, Dallaire M, Romero P, Ludwig M (1994) Effect of elastase on oscillation mechanics of lung parenchymal strips. J Appl Physiol 77:1623–1629PubMedGoogle Scholar
  15. 15.
    Romero PV, Canete C, Lopez-Aguilar J, Romero FJ (1998) Elasticity, viscosity and plasticity in lung parenchyma. In: Milic-Emili J (ed) Applied physiology in respiratory mechanics. Springer-Verlag, Berlin Heidelberg New York, pp 57–72Google Scholar
  16. 16.
    Weibel ER, Crystal RG (1991) Structural organization of the pulmonary interstitium. In: Crystal RG, West JB et al (eds) The lung: scientific foundations. Vol I. Raven Press, New York, pp 369–380Google Scholar
  17. 17.
    Hildebrandt J (1969) Dynamic properties of air-filled excised cat lungs determined by liquid pletismograph. J Appl Physiol 27:246–250PubMedGoogle Scholar
  18. 18.
    Romero PV, Robatto FM, Simard S, Ludwig MS (1992) Lung tissue behavior during methacholine challenge in rabbits in vivo. J Appl Physiol 73:207–212PubMedGoogle Scholar
  19. 19.
    Fredberg JJ, Bunk D, Ingenito E, Shore SA (1993) Tissue resistance and the contractile state of lung parenchyma. J Appl Physiol 74:1387–1397PubMedGoogle Scholar
  20. 20.
    Navajas D, Maksym GN, Bates JHT (1995) Dynamic viscoelastic nonlinearity of lung parenchymal tissue. J Appl Physiol 79:348–356PubMedGoogle Scholar
  21. 21.
    Romero F J, Pastor A, Lopez, J, Romero PV (1998) A recruitment-based rheological model for mechanical behavior of soft tissues. Biorheology 35:17–35PubMedCrossRefGoogle Scholar
  22. 22.
    Maksym GN, Bates JHT (1997) A distributed nonlinear model of lung tissue elasticity. J Appl Physiol 82:32–41PubMedGoogle Scholar
  23. 23.
    Takayanagi M (1963) Viscoelastic properties of crystalline polymers. Mem Fac Eng Kyushu Univ 33 (l):41–96Google Scholar
  24. 24.
    Stamenovic D, Smith JC (1986) Surface forces in lungs IL Microstructural mechanics and lung stability J Appl Physiol 60:1351–1357PubMedGoogle Scholar
  25. 25.
    Stamenovic D, Wilson TA (1992) Parenchymal stability J Appl Physiol 73:596–602PubMedGoogle Scholar
  26. 26.
    Romero PV, Lopez Aguilar J, Blanch L (1998) Pulmonary mechanics beyond peripheral airways. In: Milic-Emili J (ed) Applied physiology in respiratory mechanics. Springer-Verlag, Berlin Heidelberg New York, pp 199–210Google Scholar
  27. 27.
    Romero PV, Rodriguez B, Lopez-Aguilar J, Manresa F (1998) Parallel airways inho- mogeneity and lung tissue mechanics in transition to constricted state in rabbits. J Appl Physiol 84:1040–1047PubMedGoogle Scholar
  28. 28.
    Hubmayr RD, Hill M, Wilson TA (1996) Nonuniform expansion of constricted dog lungs. J Appl Physiol 80:522–530PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • P. V. Romero

There are no affiliations available

Personalised recommendations