Oxygen Delivery and Consumption Relationships in Sepsis — The Role of Inotropic and Vasoactive Drugs

Conference paper


Oxygen delivery (DO2) and oxygen consumption (\( \mathop \text{V}\limits^\text{.} \)O2) relationships are a confusing subject with contradictory research findings. Whole body DO2, also termed oxygen availability, is calculated: DO2 = Hb x SaO2 x CO x 0.134, where Hb = hemoglobin concentration, g/dl; SaO2 = arterial oxygen saturation, %; CO = cardiac output, 1/min. \( \mathop \text{V}\limits^\text{.} \)O2 can either be calculated indirectly, Hb x (SaO2 — SvO2) X CO X 0.134, where SvO2 = venous oxygen saturation, or be directly measured as the difference between inspired and expired gases. In normal individuals \( \mathop \text{V}\limits^\text{.} \)O2 is closely regulated to provide for the bodies needs and remains relatively constant over a wide range of DO2. If DO2 falls however, a critical point is reached after which \( \mathop \text{V}\limits^\text{.} \)O2 also falls. A different situation might occur in critically ill patients, particularly septic patients, where \( \mathop \text{V}\limits^\text{.} \)O2 appears to be related to DO2 over a wide range of DO2, a phenomenon termed “supply dependence” [1].


Septic Shock Methylene Blue Severe Sepsis Septic Patient Oxygen Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cain SM (1984) Supply dependancy of oxygen uptake in ARDS: myth or reality? Am J Med Sci288: 119–124Google Scholar
  2. 2.
    Edwards JD, Brown CS, Nightingale P et al (1989) The use of survivors cardiorespiratory values as therapeutic goals in septic shock. Crit Care Med 17:1098–1103PubMedCrossRefGoogle Scholar
  3. 3.
    Tuchschmidt J, Fried J, Astiz M et al (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102:216–220PubMedCrossRefGoogle Scholar
  4. 4.
    Boyd OF, Bennett ED (1996) Enhancement of perioperative tissue perfusion as a therapeutic strategy for major surgery. New Horizons 4:453–463PubMedGoogle Scholar
  5. 5.
    Chittock DR, Russell JA (1996) Oxygen delivery and consumption during sepsis. Clinics in Chest Medicine 17:263–278PubMedCrossRefGoogle Scholar
  6. 6.
    Hayes MA, Timmins AC, Yau EHS et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722PubMedCrossRefGoogle Scholar
  7. 7.
    Pemerstorfer T, Krafft P, Fizgerald R et al (1995) Optimal values for oxygen transport during hypothermia in sepsis and ARDS. Acta Anaesth Scand 107 [Suppl]:223–227CrossRefGoogle Scholar
  8. 8.
    Boyd O, Grounds RM, Bennett ED (1992) The dependency of oxygen consumption on oxygen delivery in critically ill post-operative patients is mimiced by variations in sedation. Chest 101: 1619–1624PubMedCrossRefGoogle Scholar
  9. 9.
    Villar J, Slutsky AS, Hew E et al (1990) Oxygen transport and oxygen consumption in critically ill patients. Chest 98:687–692PubMedCrossRefGoogle Scholar
  10. 10.
    Cori CF, Buchwald KW (1930) Effect of continuous injection of epinephrine on the carbohydrate metabolism, basal metabolism and vascular system of normal man. Am J Physiol 95: 71–78Google Scholar
  11. 11.
    Bihari D, Smithies M, Gimson A et al (1987) The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317:397–403PubMedCrossRefGoogle Scholar
  12. 12.
    Vallet B, Chopin C, Curtis SE et al (1993) Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective multicenter study. Crit Care Med 21:1868–1875PubMedCrossRefGoogle Scholar
  13. 13.
    De Backer D, Berre J, Zhang H et al (1993) Relationship between oxygen uptake and oxygen delivery in septic patients: effects of prostacycline versus dobutamine. Crit Care Med 21: 1658–1664PubMedCrossRefGoogle Scholar
  14. 14.
    Gilbert EM, Haupt MT, Mandanas RY et al (1986) The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis 134:873–878PubMedGoogle Scholar
  15. 15.
    Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032PubMedCrossRefGoogle Scholar
  16. 16.
    Krachman SL, Lodato RF, Morice R et al (1994) Effect of dobutamine on oxygen transport and consumption in the adult respiratory distress syndrome. Int Care Med 20:130–137CrossRefGoogle Scholar
  17. 17.
    Mira JP, Fabre JE, Baigorri F et al (1994) Lack of oxygen supply dependency in patients with severe sepsis. A study of oxygen delivery increased by military antishock trouser and dobutamine. Chest 106:1524–1531PubMedCrossRefGoogle Scholar
  18. 18.
    Meier-Hellmann A, Reinhart K (1995) Effects of catecholamines on regional perfusion and oxygenation in critically ill patients. Acta Anaesth Scand 39 [Suppl] 107:239–248CrossRefGoogle Scholar
  19. 19.
    Smithies M, Yee TH, Jackson L et al (1994) Protecting the gut and liver in the critically ill- effects of dopexamine. Crit Care Med 22:789–795PubMedCrossRefGoogle Scholar
  20. 20.
    Hanneman L, Reinhart K, Meier-Hellmann A et al (1996) Dopexamine hydrochloride in septic shock. Chest 109:756–760CrossRefGoogle Scholar
  21. 21.
    Schreuder WO, Schneider AJ, Groeneveld AB J et al (1989) Effect of dopamine vs. norepinephrine on hemodynamics in septic shock. Emphasis on right ventricular performance. Chest 95:1282–1288PubMedCrossRefGoogle Scholar
  22. 22.
    Meier-Hellmann A, Specht M, Hannemann L et al (1996) Splanchnic blood flow is greater in septic shock treated with norepinephrine than in severe sepsis. Int Care Med 22:1354–1359CrossRefGoogle Scholar
  23. 23.
    Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272:1354–1347PubMedCrossRefGoogle Scholar
  24. 24.
    Hannemann L, Reinhart K, Grenzer O et al (1995) Comparison of dopamine to dobutamine and norepinephrine for oxygen delivery and uptake in septic shock. Crit Care Med 23: 1962–9170PubMedCrossRefGoogle Scholar
  25. 25.
    Bollaert PE, Bauer P, Audibert G et al (1990) Effects of epinephrine on hemodynamics and oxygen metabolism in dopamine-resistant septic shock. Chest 98:949–953PubMedCrossRefGoogle Scholar
  26. 26.
    Petros A, Lamb G, Leone A et al (1994) Effects of a nitric oxide synthesis inhibitor in humans with septic shock. Cardiovasc Res 28:34–39PubMedCrossRefGoogle Scholar
  27. 27.
    Preiser JC, Lejeune P, Roman A et al (1995) Methylene blue administration in septic shock: a cHnical trial. Crit Care Med 23:259–264PubMedCrossRefGoogle Scholar
  28. 28.
    Daemen-Gubbels CR, Groeneveld PH, Groeneveld AB et al (1995) Methylene blue increases myocardial function in septic shock. Crit Care Med 23:1363–1370PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • O. Boyd

There are no affiliations available

Personalised recommendations