Lights and Shadows in Sepsis and Multiple Organ Dysfunction Syndrome (MODS)

  • G. Berlot
  • L. Silvestri
  • F. Iscra
  • G. Sganga
  • A. Gullo
Conference paper


In the last decade, understanding of the basic pathophysiologic mechanism underlying the development of sepsis and septic shock has made impressive progress. New discoveries have challenged previously accepted concepts of infection and sepsis, and profound revisions and new therapies have been proposed. This scientific revolution led to the implementation of several large clinical trials employing new agents aimed at preventing or blocking the release of mediators involved in the development of the systemic inflammatory response characteristic of sepsis and related disorders, ultimately leading to Multiple Organ Dysfunction Syndrome (MODS). Unfortunately, the overall results indicate that these novel approaches have not been associated with a substantially improved outcome of septic patients, and in many cases both the design and the results of these trials have been criticized [1].


Tumour Necrosis Factor Septic Shock Severe Sepsis Systemic Inflammatory Response Syndrome Septic Patient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernard GR (1995) Sepsis trials. Am J Resp Crit Care Med 102:4–10Google Scholar
  2. 2.
    Members of the American College of Chest Physician/Society of Critical Care Medicine Consensus Committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–890CrossRefGoogle Scholar
  3. 3.
    Vincent JL, Bihari D (1992) Sepsis, severe sepsis or sepsis syndrome: need for clarification. Intens Care Med 18:255–257CrossRefGoogle Scholar
  4. 4.
    Vincent JL (1997) Dear SIRS, I’m sorry to say I that I don’t like you… Crit Care Med 25: 372–374Google Scholar
  5. 5.
    Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112:235–243PubMedCrossRefGoogle Scholar
  6. 6.
    Pittet D, Rangel-Frausto M, Li N et al (1995) Systemic inflammatory response, sepsis, severe sepsis and septic shock: incidence morbidities and outcomes in ICU patients. Intens Care Med 21:32–309CrossRefGoogle Scholar
  7. 7.
    Rangel-Frausto M, Pittet D, Costigan M et al (1995) The natural history of the systemic inflammatory response syndrome (SIRS). JAMA 273:117–123PubMedCrossRefGoogle Scholar
  8. 8.
    Salvo I, de Cian W, Musicco M et al (1995) The Italian SEPSIS study; preliminary results on the incidence and evolution of SIRS, sepsis, severe sepsis and septic shock. Intens Care Med 21:S244-S249CrossRefGoogle Scholar
  9. 9.
    Rackow EC, Astiz ME (1991) Pathophysiology and treatment of septic shock. JAMA 266: 548–554PubMedCrossRefGoogle Scholar
  10. 10.
    Beriot G, Vincent JL (1992) Cardiovascular effects of cytokines. Clin Intens Care 3:199–205Google Scholar
  11. 11.
    Davies MG, Hagen PO (1997) Systemic inflammatory response syndrome. Br J Surg 84: 920–935PubMedCrossRefGoogle Scholar
  12. 12.
    Moldawer LL (1994) Biology of proinflammatory cytokines and their antagonist. Crit Care Med 22:S3-S7PubMedGoogle Scholar
  13. 13.
    Christman JW, Holden EP, Blackwell TS (1995) Strategies for blocking the systemic effects of cytokines in the sepsis syndrome. Crit Care Med 23:955–963PubMedCrossRefGoogle Scholar
  14. 14.
    Ziegler EJ, McCuchan JA, Fierer J et al (1982) Treatment of gram-bacteremia and shock with human antiserum to a mutant Escherichia coli. New Engl J Med 307:1225–1230PubMedCrossRefGoogle Scholar
  15. 15.
    Lachman E, Pitsoe SB, Gaffin SL (1984) Antilypolisaccharide immunotherapy in the management of septic shock of obstetrical and gynecological origin. Lancet 1:981–983PubMedCrossRefGoogle Scholar
  16. 16.
    Fomsgaard A, Baek L, Foomsgard JS et al (1988) Preliminary study in treatment of septic shock patients with antilypolisaccharide IgG from blood donors. Scand J Infect Dis 21: 697–708CrossRefGoogle Scholar
  17. 17.
    Talan DA (1993) Recent developments in our understanding of sepsis: evaluation of antiendotoxin antibodies and biological response modifiers. Ann Emer Med 22:1871–1990CrossRefGoogle Scholar
  18. 19.
    Greenman RL, Schein RMH, Martin MA et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of Gram- sepsis. JAMA 266: 1097–1102PubMedCrossRefGoogle Scholar
  19. 20.
    Ziegler EJ, McCutchan JA, Fierer J et al (1991) Treatment of Gram- bacteremia and septic shock with HA-IA human monoclonal antibody against endotoxin. A randomized, double blind, placebo controlled trial. N Engl J Med 324:429–436PubMedCrossRefGoogle Scholar
  20. 21.
    Fisher CJ, Zimmerman J, Khazaeli MB et al (1990) Initial evaluation of human monoclonal anti-lipid A antibody (HA-IA) in patients with sepsis syndrome. Crit Care Med 18:1311–1315PubMedCrossRefGoogle Scholar
  21. 22.
    Greenberg RN, Wilson KM, Kunz AY et al (1992) Observations using antiendotoxin antibody (E5) as adjuvant therapy in humans with suspected, serious Gram- sepsis. Crit Care Med 20: 730–735PubMedCrossRefGoogle Scholar
  22. 23.
    Bone RC, Balk RA, Fein AM et al (1995) A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomized, controlled study. Crit Care Med 23:994–1006PubMedCrossRefGoogle Scholar
  23. 24.
    Cunnion RE (1992) Clinical trials of immunotherapy for sepsis. Crit Care Med 20:721–723PubMedCrossRefGoogle Scholar
  24. 25.
    Silva AT, Bayston KF, Cohen J (1990) Prophylactic and therapeutic effects of a monoclonal antibody to tumour necrosis factor-alfa in experimental Gram- shock. J Inf Dis 162:421–427CrossRefGoogle Scholar
  25. 26.
    Exley AR, Cohen J, Buurman WA et al (1990) Monoclonal antibody to TNF in severe septic shock. Lancet 335:1275–1277PubMedCrossRefGoogle Scholar
  26. 27.
    Vincent JL, Bakker J, Marecaux G et al (1992) Administration of anti TNF antibodies improves left ventricular function in septic shock patients: results of a pilot study. Chest 101: 810–815PubMedCrossRefGoogle Scholar
  27. 28.
    Dhainaut JFA, Vincent JL, Richard C et al (1995) DP 571, a humanized antibody to tumour necrosis factor-alpha: safety, pharmacokinetics, immune response, and influence of the antibody on cytokine concentrations in patients with septic shock. Crit Care Med 23:1461–1469PubMedCrossRefGoogle Scholar
  28. 29.
    Cohen J, Carlet J (1996) INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-a in patients with sepsis. Crit Care Med 24:1431–1440PubMedCrossRefGoogle Scholar
  29. 30.
    Rheinhart K, Wiegand-Lohnert C, Grimminger F et al (1996) Assessment of the safety and effectiveness of the monoclonal anti-tumour necrosis factor antibody fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose ranging study. Crit Care Med 24:733–742CrossRefGoogle Scholar
  30. 31.
    Granowitz EV, Santos AA, Poutsaka DD et al (1991) Production of Interieukin-1 receptor antagonist during experimental endotoxemia. Lancet 1338:1423–1424CrossRefGoogle Scholar
  31. 32.
    Dinarello CA (1991) The proinflammatory cytokines Interleukin-1 and tumor necrosis factor and treatment of septic shock syndrome. J Inf Dis 163:1177–1184CrossRefGoogle Scholar
  32. 33.
    Ohlsson K, Bjork P, Bergenfeldt M et al (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 343:550–552CrossRefGoogle Scholar
  33. 34.
    Arend WP (1991) Interleukin 1 receptor antagonist: a new member of Interleukin 1 family. J Clin Invest 88:1445–1451PubMedCrossRefGoogle Scholar
  34. 35.
    Fisher E, Maraña MA, Van Zee KJ et al (1992) Interleukin-1 receptor antagonist improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia. J Clin Invest 89:1551–1557CrossRefGoogle Scholar
  35. 36.
    Fisher CJ, Slotman GJ, Opal SM et al (1994) Initial evaluation of human recombinant Interleukin 1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open label, placebo-controlled multicentre trial. Crit Care Med 22:12–21PubMedGoogle Scholar
  36. 37.
    Fisher CJ, Dhainaut JF, Opal SM et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double bhnd, placebo-controlled trial. JAMA 271:1836–1843PubMedCrossRefGoogle Scholar
  37. 38.
    Knaus WA, Harrell FE, LeBreque JF et al (1996) Use of predicted risk of mortality to evaluate the effectiveness of anticytokine therapy in sepsis. Crit Care Med 24:46–56PubMedCrossRefGoogle Scholar
  38. 39.
    Bazzoni F, Beutler B (1996) Seminars in Medicine at the Beth Israel Hospital, Boston: The tumour necrosis factor ligand and receptor families. New Engl J Med 34:1717–1725Google Scholar
  39. 40.
    Sorkine P, Setton A, Halpem P et al (1995) Soluble tumour necrosis factor receptors reduce bowel ischemia-induced lung permeability and neutrophil sequestration. Crit Care Med 23: 1377–1381PubMedCrossRefGoogle Scholar
  40. 41.
    Van Zee KJ, Kohno T, Fisher E et al (1992) Tumour necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumour necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 89:4845–4849PubMedCrossRefGoogle Scholar
  41. 42.
    Möhler KM, Torrance DS, Smith CA et al (1993) Soluble tumour necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 151:1548–1561PubMedGoogle Scholar
  42. 43.
    Fisher CJ, Agosti JA, Opal SM et al (1996) Treatment of septic shock with the tumor necrosis factor recèptor:Fc fusion protein. New Engl J Med 334:1697–1702PubMedCrossRefGoogle Scholar
  43. 44.
    Abraham E, Glauser MP, Butler T et al (1997) Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multi- center trial. Jama 277:1531–1538Google Scholar
  44. 45.
    Bone RC (1992) Phospholipids and their inhibitors: a critical evaluation of their role in the treatment of sepsis. Crit Care Med 20:884–890PubMedCrossRefGoogle Scholar
  45. 46.
    Lefer A (1989) Significance of lipid mediators in shock states. Circ Shock 27:3–12PubMedGoogle Scholar
  46. 47.
    Sun X, Hsueh W (1988) Bowel necrosis induced by tumour necrosis factor in rats is mediated by platelet activating factor. J Clin Invest 81:1328–1331PubMedCrossRefGoogle Scholar
  47. 48.
    Sun X, Hsueh W, Torre-Amione G (1990) Effects of in vivo priming on endotoxin induced hypotension and tissue injury: the role of PAF and tumour necrosis factor. Am J Pathol 136: 949–956PubMedGoogle Scholar
  48. 49.
    Thompson WA, Coyle S, Van Zee K et al (1994) The metabolic effects of platelet activating factor in endotoxemic man. Arch Surg 129:72–79PubMedCrossRefGoogle Scholar
  49. 50.
    Dhainaut JFA, Tenaillon A, Le Tulzo Y et al (1994) Platelet-activating factor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22:1720–1728PubMedGoogle Scholar
  50. 51.
    Gomez A, Wang R, Unruh H et al (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73:671–785PubMedCrossRefGoogle Scholar
  51. 52.
    Stein B, Pfenninger, Grunert A et al (1990) Influence of continuous haemofiltration on haemo- dynamics and central blood volume in experimental endotoxic shock. Intens Care Med 16: 494–499CrossRefGoogle Scholar
  52. 53.
    Stein B, Pfenninger, Grunert A et al (1991) The consequences of continuous haemofiltration on lung mechanics and extravascular lung water in a porcine endotoxic shock model. Intens Care Med 17:293–298CrossRefGoogle Scholar
  53. 54.
    Grootendorst AF, van Bommel EFH, van der Hoven B et al (1992) High volume hemofiltration improves hemodynamics of endotoxin-induced shock in the pig. J Crit Care 7:67–75CrossRefGoogle Scholar
  54. 55.
    Grootendorst AF, van Bommel EFH, van der Hoven B et al (1992) High volume hemofiltration improves right ventricular function endotoxic shock in the pig. Intensive Care Med 18: 235–240PubMedCrossRefGoogle Scholar
  55. 56.
    Lee PA, Matson JR, Pry or RW, Hinshaw LB (1993) Continuous arteriovenous hemofiltration therapy for staphylococcus aureus-induced septicemia in pigs. Crit Care Med 21:914–924PubMedCrossRefGoogle Scholar
  56. 57.
    Natanson C, Hoffman WD, Danner RL et al (1993) Plasma exchange does not improve survival in a canine model of human septic shock. Transfusion 33:243–248PubMedCrossRefGoogle Scholar
  57. 58.
    Busund R, Lindsetmo RO, Rasmussen LT et al (1991) Tumour necrosis factor and Interleukin 1 appearance in experimental Gram-septic shock: the effects of plasma exchange with albumin and plasma infusion. Arch Surg 126:591–597PubMedCrossRefGoogle Scholar
  58. 59.
    Busund R, Lindsetmo RO, Balteskard L et al (1993) Repeated plasma therapy induces fatal shock in experimental septicemia. Circ Shock 40:268–275PubMedGoogle Scholar
  59. 60.
    Gotloib L, Barzilay E, Shustak A et al (1986) Hemofiltration in septic ARDS: the artificial kidney as an artificial endocrine lung. Resuscitation 13:123–132PubMedCrossRefGoogle Scholar
  60. 61.
    Coraim FJ, Coraim HP, Ebermann R, Stellwag FM (1986) Acute respiratory failure after cardiac surgery: clinical experience with the application of continuous arteriovenous hemofiltration. Crit Care Med 14:714–717PubMedCrossRefGoogle Scholar
  61. 62.
    Berlot G, Gullo A, Fasiolo S et al (1997) Hemodynamic effects of plasma exchange in septic patients: preliminary report. Blood Purification 15:45–53PubMedCrossRefGoogle Scholar
  62. 63.
    Storck M, Hartl WH, Zimmerer E, Inthom D (1991) Comparison of pump-driven and spontaneous continuous hemofiltration in postoperative acute renal failure. Lancet 337:452–455PubMedCrossRefGoogle Scholar
  63. 64.
    Barzilay E, Kessler D, Berlot G et al (1989) The use of extracorporeal supportive techniques as additional treatment for sepsis-induced MOF patients. Crit Care Med 17:634–637PubMedCrossRefGoogle Scholar
  64. 65.
    Bellomo R, Tipping P, Boyce N (1993) Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med 21:522–526PubMedCrossRefGoogle Scholar
  65. 66.
    Heering P, Morgera S, Schmitz FJ et al (1997) Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intens Care Med 23: 288–296CrossRefGoogle Scholar
  66. 67.
    Sander A, Armbruster W, Sander B et al (1997) Hemofiltration increases IL-6 clearance in early systemic inflammatory response syndrome but does not alter IL-6 and TNF-a plasma con- centradons. Intens Care Med 23:878–884CrossRefGoogle Scholar
  67. 68.
    Peetre C, Thysell H, Gmbb A et al (1988) A tumour necrosis factor binding protein is present in human biological fluids. Eur J Haematol 41:414–419PubMedCrossRefGoogle Scholar
  68. 69.
    Byrick RJ, Goldstein MB, Wong PJ (1992) Increased plasma tumour necrosis factor concentration in severe rhabdomyolysis is not reduced by continuous arteriovenous hemodialysis. Crit Care Med 20:1483–1486PubMedCrossRefGoogle Scholar
  69. 70.
    Nagaki M, Hughes RD, Lau JIN, Williams R (1991) Removal of endotoxin and cytokines by adsorbents and the effect of plasma protein binding. Int J Artif Org 14:43–50Google Scholar
  70. 71.
    Bellomo R, Parkin G, Love J, Boyce N (1993) A prospective comparative study of continuous arteriovenous hemodiafiltration and continuous venovenous hemodiafiltration in critically ill patients. Am J Kidney Dis 21:400–404PubMedGoogle Scholar
  71. 72.
    Dofferhoff ASM (1991) Release of endotoxin and other mediators during the treatment of Gram- sepsis. An introduction. Rijksuniversity Groeningen 1–32Google Scholar
  72. 73.
    Shenep J, Flynn PM, Barrett FF et al (1988) Serial quantitation of endotoxemia and bacteremia during therapy for Gram- bacterial sepsis. J Inf Dis 157:565–568CrossRefGoogle Scholar
  73. 74.
    Endo S, Inada K, Yamada Y et al (1994) Plasma endotoxin and cytokine concentration in patients with hemorrhagic shock. Crit Care Med 22:994–1001CrossRefGoogle Scholar
  74. 75.
    Hoffman JN, Hartl WH, Deppish R et al (1996) Effect of hemofiltration on hemodynamics and systemic concentrations of anaphylotoxins and cytokines in human sepsis. Intens Care Med 22:1360–1367CrossRefGoogle Scholar
  75. 76.
    Schetz M, Ferdinande P, Van den Berghe G, Lauwers P (1995) Removal of pro-inflammatory cytokines with renal replacement therapy: sense or nonsense? Intens Care Med 21:169–176CrossRefGoogle Scholar
  76. 77.
    Pinsky MR, Vincent JL, Deviere J et al (1993) Serum cytokine levels in human septic shock: relation to multiple system organ failure and mortality. Chest 103:565–575PubMedCrossRefGoogle Scholar
  77. 78.
    Calandra T, Baumgartner JD, Grau GE et al (1990) Prognostic values of tumour necrosis fac- tor/cachectin, interleukin-1, interferon-alpha, and interferon gamma in the serum of patients with septic shock. J Infect Dis 161:982–987PubMedCrossRefGoogle Scholar
  78. 79.
    Calandra T, Gerain J, Heumann D et al (1991) High circulating levels of interleukin-6 in patients with septic shock evolution during sepsis, prognostic value and interplay with other cytokines. Am J Med 91:23–29PubMedCrossRefGoogle Scholar
  79. 80.
    Bone RC (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation. Crit Care Med 24:163–172PubMedCrossRefGoogle Scholar
  80. 81.
    Galley HE, Webster NR (1996) The immuno-inflammatory cascade. Br J Anaesth 77:11–16PubMedCrossRefGoogle Scholar
  81. 82.
    Cruickshank AM, Eraser WD, Burns HJ et al (1990) Response of serum IL-6 in patients undergoing elective surgery of varying severity. Chnical Science 79:161–165Google Scholar
  82. 83.
    Pullicino EA, Carli F, Poole S et al (1990) The relationship between the circulating concentrations of IL-6, TNF and the acute phase response to elective surgery and accidental injury. Lymphokine Res 9:231–238PubMedGoogle Scholar
  83. 84.
    Fassbender K, Pargger H, Muller W, Zimmerli W (1993) IL-6 and acute phase protein concentrations in surgical intensive care unit patients: diagnostic sign in nosocomial infection. Crit Care Med 21:1175–1180PubMedCrossRefGoogle Scholar
  84. 85.
    Waage A, Aasen AO (1992) Different role of cytokine mediators in septic shock related to meningococcal disease and surgery. Immunology 127:221–230Google Scholar
  85. 86.
    Dandona P, Nix D, Wilson MF et al (1994) Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab 79:1605–1608PubMedCrossRefGoogle Scholar
  86. 87.
    Assicot M, Gendrel D, Carsin H et al (1993) High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 341:515–518PubMedCrossRefGoogle Scholar
  87. 88.
    Nylen ES, O’Neill W, Jordan MH et al (1992). Serum procalcitonin as an index of inhalation injury in bums. Horm Met Res 24:439–442CrossRefGoogle Scholar
  88. 89.
    Badia JM, Whawell SA, Scott-Coombes DM et al (1996) Peritoneal and systemic cytokine response to laparotomy. Br J Surg 83:347–348PubMedCrossRefGoogle Scholar
  89. 90.
    Iscra F, Antonaglia V, Guglielmi D, Gullo A (1997) Prognostic value of IL-6, TNF and CRP in SEPSIS/SIRS patients. Int Care Med 23[Suppl 1]:75Google Scholar
  90. 91.
    Wildling E, Pusch F, Aichelburg A et al (1997) Procalcitonin is elevated in patients after severe injury. Int Care Med 23[Suppl 1]:62Google Scholar
  91. 92.
    de Werra I, Jaccard C, Corradin SB et al (1997) Cytokines, nitrite/nitrate, S TNFr, and PCT concentration: comparisons in patients with septic shock, cardiogenic shock and bacterial pneumonia. Crit Care Med 25:607–613PubMedCrossRefGoogle Scholar
  92. 93.
    Baxby D, van Saene HKF, Stoutenbeek CP, Zandstra DF (1996) Selective decontamination of the digestive tract: 13 years on, what it is and what it is not. Intensive Care Med 22:699–706PubMedCrossRefGoogle Scholar
  93. 94.
    van Saene HKF, Stoutenbeek CP, Zandstra DF, Fox MA (1998) Prevention of ICU infections. In: van Saene HKF, Silvestri L, de la Cai MA (eds) Infection control in the intensive care unit. Springer-Verlag Italia, Milano, pp 225–238Google Scholar
  94. 95.
    Silvestri L, van Saene HKF, Gullo A (1997) Selective decontamination of the digestive tract in critically ill patients: a pathogenesis-based infection control method. Care Crit 111 13: 112–117Google Scholar
  95. 96.
    Brun-Buisson C, Legrand P, Rauss A et al (1989) Intestinal decontamination for control of nosocomial multi-resistant Gram-negative bacilli. Ann Intern Med 110:873–881PubMedGoogle Scholar
  96. 97.
    Silvestri L (1991) Selective decontamination of the digestive tract. Is it a strategy? In: Gullo A (ed) Recent Advances in Anaesthesia, Pain, Intensive Care and Emergency, APICE, Trieste, vol 6, pp 581–595Google Scholar
  97. 98.
    Potgieter PD, Hammond JM (1995) Prophylactic use of the new quinolones for the prevention of nosocomial infection in the intensive care unit. Drugs 49 [Suppl 2]: 86–91PubMedCrossRefGoogle Scholar
  98. 99.
    van Saene JJM, Stoutenbeek CP, van Saene HKF et al (1996) Reduction of the intestinal endotoxin pool by three different SDD regimens in human volunteers. J Endotox Res 3: 337–343Google Scholar
  99. 100.
    Damjanovic V, van Saene HKF (1998) The value of surveillance cultures in neonatal intensive care units. In: van Saene HKF, Silvestri L, de la Cai MA (eds) Infection control in the Intensive Care Unit. In: Infection control in the Intensive Care Unit. Springer-Verlag Italia, Milano, pp 316–238Google Scholar
  100. 101.
    van Saene HKF, Baxby D, Stoutenbeek CP, Zandstra DF (1993) Selective decontamination of the digestive tract (SDD). Does it improve outcome? Does it lead to resistance? In: Gullo A (ed) Recent Advances in Anaesthesia, Pain, Intensive Care and Emergency, APICE, Trieste, pp 395–405Google Scholar
  101. 102.
    Selective decontamination of the digestive tract trialists collaborative group (1993) Metaanalysis of randomised controlled trials of selective decontamination of the digestive tract. Br Med J 307:525–532CrossRefGoogle Scholar
  102. 103.
    Heyland DK, Cook DJ, Jaeschke R et al (1994) Selective decontamination of the digestive tract: an overview. Chest 105:1221–1229PubMedCrossRefGoogle Scholar
  103. 104.
    Liberati A, D’Amico R, Pifferi S et al (1997) Antibiotic prophylaxis in adult patients treated in Intensive Care Units. The Cochrane Library, issue n 3. Abstract available from: http://
  104. 105.
    Unertl KE, Lenhart F-P, Holzel C, Ruckdeschel G (1992) Selective digestive decontamination in ICU patients. Clinical results in trauma and general ICU patients. Rean Urg 1[3 bis]: 516–520CrossRefGoogle Scholar
  105. 106.
    Hurley JC (1995) Prophylaxis with enteral antibiotics in ventilated patients: selective decontamination or selective cross-infection? Antimicrob Agents Chemother 39:941–947PubMedGoogle Scholar
  106. 107.
    Tetteroo GWM, Wagenvoort JHT, Mulder PGH et al (1993) Decreased mortality rate and length of hospital stay in surgical intensive care unit patients with successful selective decontamination of the gut. Crit Care Med 21:1692–1698PubMedCrossRefGoogle Scholar
  107. 108.
    Bion JF, Badger I, Crosby HA et al (1994) Selective decontamination of the digestive tract reduces Gram-negative pulmonary colonization but not systemic endotoxaemia in patients undergoing elective liver transplantation. Crit Care Med 22:40–49PubMedGoogle Scholar
  108. 109.
    Schardey HM, Joosten U, Finke U et al (1997) The prevention of anastomotic leakage after gastrectomy with local decontamination. A prospective, randomized, double-bUnd placebo- controlled multicenter trial. Ann Surg 225:172–180PubMedCrossRefGoogle Scholar
  109. 110.
    Steiberg D (1979) On leaving the peritoneal cavity open in acute generalized suppurative peritonitis. Am J Surg 137–216-220CrossRefGoogle Scholar
  110. 111.
    Duff J, Moffat J (1981) Abdominal sepsis managed by leaving abdomen open. Surgery 90: 774–778PubMedGoogle Scholar
  111. 112.
    Mughal MM, Bancewicz J, Irving MH (1986) “Laparostomy”: a technique for the management of intra-abdominal sepsis. Br J Surg 73:253–259PubMedCrossRefGoogle Scholar
  112. 113.
    Anderson ED, Mandelbaum DM, ElUson EC et al (1983) Open packing of the peritoneal cavity in generalized bacterial peritonitis. Am J Surg 145:131–135PubMedCrossRefGoogle Scholar
  113. 114.
    Wittman DH, Aprahamian C, Bergstein JM (1990) Etappenlavage: advanced diffuse peritonitis managed by planned multiple laparotomies utilizing zippers, shde fastener, and velcro analogue for temporary abdominal closure. World J Surg 14:218–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • G. Berlot
  • L. Silvestri
  • F. Iscra
  • G. Sganga
  • A. Gullo

There are no affiliations available

Personalised recommendations