Therapies Directed against TNF-α and IL-1 during Sepsis

  • K. Reinhart
  • W. Karzai
Conference paper


Sepsis is a systemic inflammatory response to an infectious stimuli [1]. Sepsis is diagnosed when clinical and/or laboratory parameters confirm the presence of an inflanmiatory response and identifies an infection as the cause of this response. The infection can be located in any organ or tissue of the body and can be caused by bacteria, fungi, parasites or viruses. Sepsis has been documented in all age groups and may occur both in immunocompetent and immunosuppressed patients. Although our understanding of the pathophysiology of sepsis has improved considerably and despite availability of modem medical technology, the morbidity and mortality associated with this syndrome has not been much affected in the last decade [2, 3].


Septic Shock Severe Sepsis Septic Shock Patient Sepsis Syndrome Infectious Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar
  2. 2.
    Abraham E, Wunderink R, Silverman H et al (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. JAMA 273:934–941Google Scholar
  3. 3.
    Fisher CJ, Agosti JM, Opal SM et al (1996) Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 334:1697–1702PubMedCrossRefGoogle Scholar
  4. 4.
    Schreuder WO, Schneider AJ, Groenveld AB J et al (1989) Effects of dopamine vs norepinephrine on hemodynamics in septic shock. Chest 95:1282–1288PubMedCrossRefGoogle Scholar
  5. 5.
    Bone RC (1992) Phospholipids and their inhibitors: a critical evaluation of their role in the treatment of sepsis. Crit Care Med 20:884–890PubMedCrossRefGoogle Scholar
  6. 6.
    Bone RC (1992) Inhibitors of complement and neutrophils: A critical evaluation of their role in the treatment of sepsis. Crit Care Med 20:891–898PubMedCrossRefGoogle Scholar
  7. 7.
    Bone RC (1992) Modulators of coagulation. A critical appraisal of their role in sepsis. Arch Intern Med 152:1381–1389PubMedCrossRefGoogle Scholar
  8. 8.
    Cobb JP, Cunnion RE, Danner RL (1993) Nitric oxide as a target for therapy in septic shock. Crit Care Med 21:1261–1263PubMedCrossRefGoogle Scholar
  9. 9.
    Blackwell TS, Christman JW (1996) Sepsis and cytokines: current status. Br J Anaesth 77:110–117PubMedCrossRefGoogle Scholar
  10. 10.
    Schroder J, Stuber F, Gallati H et al (1995) Pattern of soluble TNF receptors I and II in sepsis. Infection 23:143–148PubMedCrossRefGoogle Scholar
  11. 11.
    Zeni F, Vindimian M, Pain P et al (1995) Antiinflammatory and proinflammatory cytokines in patients with severe sepsis [letter]. J Infect Dis 172:1171–1172PubMedCrossRefGoogle Scholar
  12. 12.
    Goldie AS, Fearon KC, Ross JA et al (1995) Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. The Sepsis Intervention Group. JAMA 274:172–177Google Scholar
  13. 13.
    Moldawer LL (1993) Interleukin-1, TNF alpha and their naturally occurring antagonists in sepsis. Blood Purif 11:128–133PubMedCrossRefGoogle Scholar
  14. 14.
    Dhainaut JF, Tenaillon A, Le Tulzo Y et al (1994) Platelet-activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo- controlled, multicenter clinical trial. BN 52021 Sepsis Study Group. Crit Care Med 22: 1720–1728PubMedGoogle Scholar
  15. 15.
    Tracey KJ, Cerami A (1993) Tumor necrosis factor: an updated review of its biology. Crit Care Med 21:8415–22CrossRefGoogle Scholar
  16. 16.
    Michie HR, Manogue KR, Spriggs DR et al (1988) Detection of tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486PubMedCrossRefGoogle Scholar
  17. 17.
    Eichenholz PW, Eichacker PQ, Hoffman WD et al (1992) Tumor necrosis factor challenges in canines: Patterns of cardiovascular dysfunction. Am J Physiol 263:H668-H675PubMedGoogle Scholar
  18. 18.
    Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330:662–664PubMedCrossRefGoogle Scholar
  19. 19.
    Beutler B, Millsark IW, Cerami AC (1985) Passive Immunization against cachectin/tumor necrosis factor protects mice from lethal effects of endotoxin. Science 229:869–871PubMedCrossRefGoogle Scholar
  20. 20.
    Gardlund B, Sjohn J, Nilsson A et al (1995) Plasma levels of cytokines in primary septic shock in humans: correlation with disease severity. J Infect Dis 172:296–301PubMedCrossRefGoogle Scholar
  21. 21.
    Herrmann JL, Blanchard H, Brunengo P et al (1994) TNF alpha, IL-1 beta and IL-6 plasma levels in neutropenic patients after onset of fever and correlation with the C-reactive protein (CRP) kinetic values. Infection 22:309–315PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher CJ Jr, Opal SM, Dhainaut JF et al (1993) Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. The CB0006 Sepsis Syndrome Study Group. Crit Care Med 21:318–327PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen J, Carlet J, The INTERSEPT Study Group (1996) INTERSEPT: An international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis. Crit Care Med 24:1431–1440PubMedCrossRefGoogle Scholar
  24. 24.
    Reinhart K, Wiegend-Löhnert C, Grimminger F et al (1996) Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: A multicenter, randomized, placebo-controlled, dose- ranging study. Crit Care Med 24:733–742PubMedCrossRefGoogle Scholar
  25. 25.
    Abraham E, Glauser MP, Butler T et al (1997) Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. JAMA 277:1531–1538PubMedCrossRefGoogle Scholar
  26. 26.
    Fekade D, Knox K, Hussein K et al (1996) Prevention of Jarisch-Herxheimer reactions by treatment with antibodies against tumor necrosis factor alpha. N Engl J Med 335:311–315PubMedCrossRefGoogle Scholar
  27. 27.
    Dinarello CA (1991) Interelukin-1 and interleukin-1 antagonism. Blood 77:1627–1652PubMedGoogle Scholar
  28. 28.
    Cannon JG, Tompkins RG, Gelfand JA et al (1990) Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 160:79–84CrossRefGoogle Scholar
  29. 29.
    Girardin E, Grau GE, Dayer J-M et al (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319:397–400PubMedCrossRefGoogle Scholar
  30. 30.
    Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771–778PubMedGoogle Scholar
  31. 31.
    Calandra T, Baumgartner JD, Grau GE et al (1990) Prognostic values of tumor necrosis fac- tor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. J Infect Dis 161:98288–98987CrossRefGoogle Scholar
  32. 32.
    Ohlsson K, Björk P, Bergenfeldt M et al (1990) Interleukin-1 receptor antagonist reduces mortahty from endotoxin shock. Nature 348:550–552PubMedCrossRefGoogle Scholar
  33. 33.
    Fischer E, Maraño MA, Van Zee KJ et al (1992) Interleukin-1 receptor antagonist blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host response to sublethal endotoxaemia. J Clin Invest 89:1551–1557PubMedCrossRefGoogle Scholar
  34. 34.
    Fisher CJ Jr, Slotman GJ, Opal SM et al (1994) Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. The DL-IRA Sepsis Syndrome Study Group. Crit Care Med 22:12–21Google Scholar
  35. 35.
    Fisher CJ, Dhainaut JF, Opal SM et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, dou- ble-blind, placebo-controlled trial. Phase IH rhlL-lra Sepsis Syndrome Study Group. JAMA 271:1836–1843Google Scholar
  36. 36.
    Opal SM, Fisher CJ, and Dhainaut JF (1997) The confirmatory interleukin-1 receptor antagonist trial in sever sepsis: a phase III randomized, double-blind, placebo-controlled, multicenter trial. Crit Care Med 25:1115–1124PubMedCrossRefGoogle Scholar
  37. 37.
    Lukacs NW, Stricter RM, Chensue SW et al (1995) TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol 154:5411–5417PubMedGoogle Scholar
  38. 38.
    Moore FD, Socher SH, Davis C (1991) Tumor necrosis factor and endotoxin can cause neutrophil activation through separate pathways. Arch Surg 126:70–73PubMedCrossRefGoogle Scholar
  39. 39.
    Alexander HR, Sheppard BC, Jenson JC et al (1991) Treatment with recombinant human tumor necrosis factor-alpha protects rats against lethality, hypotension, and hypothermia of gram-negative sepsis. J Clin Invest 88:34–39PubMedCrossRefGoogle Scholar
  40. 40.
    Nakane A, Minagawa T, Kato K (1988) Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun 56: 2563–2569PubMedGoogle Scholar
  41. 41.
    Eschtenacher B, Mannel DN, Hultner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–77CrossRefGoogle Scholar
  42. 42.
    Chorinchath BB, Kong LY, Mao L et al (1996) Age-associated differences in TNF-alpha and nitric oxide production in endotoxic mice. J Immunol 156:1525–1530PubMedGoogle Scholar
  43. 43.
    Stuber F, Petersen M, Bokelmann F et al (1996) A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis [see comments]. Crit Care Med 24:381–384PubMedCrossRefGoogle Scholar
  44. 44.
    Assicot M, Gendrel D, Carsin H et al (1993) High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 341:515–518PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • K. Reinhart
  • W. Karzai

There are no affiliations available

Personalised recommendations