The role of proinflammatory cytokines in multiple sclerosis

  • R. Furlan
  • P. L. Poliani
  • A. Bergami
  • M. Gironi
  • G. Desina
  • G. Martino


The pathological hallmark of multiple sclerosis (MS) is the presence, within the central nervous system (CNS), of patchy inflammatory infiltrates leading to demyelination and axonal loss, and containing autoreactive T cells and pathogenic non-antigen-specific mononuclear cells [1]. It is currently believed that CNS antigen-reactive T cells provide the organ specificity of the pathogenic process. These cells regulate the recirculation within the CNS of non-antigen-specific lymphocytes and monocytes which act as effector cells by releasing myelinotoxic substances [2]. T cells specific for myelin and non-myelin components and mainly displaying the α/β T cell receptor (TCR) constitute the majority of the CNS-antigen specifc T cell population, while blood-borne activated macrophages, B cells producing antibodies against myelin components (i.e. myelin oligodendrocyte glycoprotein) or still unidentified components (i.e. oligoclonal cerebrospinal fluid bands), and γ/δ T cells represent the effector cell population. Nevertheless, the two different cell populations display overlapping functions; a minor proportion of α/β T cells specific for myelin antigens shows cytotoxic properties while γ/δ T cells can contribute to effector cell recruitment (mainly macrophages) via proinflammatory cytokine and chemokine production. To further complicate the T cell-mediated pathogenic scenario in MS, it has been recently reported that both regulatory as well as effector cells can be cross-regulated by different subsets of T cells including anti-T cell receptor (TCR) T cells as well as T cells carrying a natural killer receptor (NKR) [3].


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Multiple Sclerosis Plaque Myelin Basic Protein Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153–187PubMedCrossRefGoogle Scholar
  2. 2.
    Steinman L (1996) A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc Natl Acad Sci USA 93: 2253–2256PubMedCrossRefGoogle Scholar
  3. 3.
    Martino G, Hartung HP (1999) Immunopathogenesis of MS: the role of T cells. Curr Opin Neurol (in press).Google Scholar
  4. 4.
    Martino G, Furlan R, Poliani PL (1999) Inflammation in multiple sclerosis: a close interplay. In: Martino G, Adorini L (eds) Martino G, Furlan R, Poliani PL, pp 185–194 ( Topics in neuroscience)Google Scholar
  5. 5.
    Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72: 551–560PubMedCrossRefGoogle Scholar
  6. 6.
    Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78: 399–408PubMedCrossRefGoogle Scholar
  7. 7.
    Selmaj KW, CS Raine (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23: 339–346PubMedCrossRefGoogle Scholar
  8. 8.
    Esiri MM, Gay D (1997) The immunocytochemistry of multiple sclerosis plaques. In: Raine CS, McFarland HF, Tourtellotte WW (eds) Multiple sclerosis. Clinical and pathogenetic basis. Chapman 0026 Hall, London, pp 173186Google Scholar
  9. 9.
    Karpus WJ, Ransohoff RM (1998) Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol 161: 2667–2671PubMedGoogle Scholar
  10. 10.
    Battistini L, Borsellino G, Sawicki G, Poccia F, Salvetti M, Ristori G, Brosnan CF (1997) Phenotypic and cytokine analysis of human peripheral blood gamma delta T cells expressing NK cell receptors. J Immunol 159: 37233730Google Scholar
  11. 11.
    Newcombe J, Li H, Cuzner ML (1994) Low density lipoprotein uptake by macrophages in multiple sclerosis plaques: implications for pathogenesis. Neuropathol Appl Neurobiol 20: 152–162PubMedCrossRefGoogle Scholar
  12. 12.
    Huterer SJ, Tourtellotte WW, Wherrett JR (1995) Alterations in the activity of phospholipases A2 in postmortem white matter from patients with multiple sclerosis. Neurochem Res 20: 1335–1343PubMedCrossRefGoogle Scholar
  13. 13.
    Narayana PA, Doyle TJ, Lai D, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43: 56–71PubMedCrossRefGoogle Scholar
  14. 14.
    Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6: 259–274PubMedCrossRefGoogle Scholar
  15. 15.
    Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, Opdenakker G, Newcombe J (1996) The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55: 1194–1204PubMedCrossRefGoogle Scholar
  16. 16.
    Li H, Cuzner ML, Newcombe J (1996) Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol 22: 207–215PubMedCrossRefGoogle Scholar
  17. 17.
    Selmaj KW, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87: 949–954PubMedCrossRefGoogle Scholar
  18. 18.
    Filippi M, Rocca MA, Martino G, Horshfield MA, Comi G (1998) Magnetization transfer changes in the normal-appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814PubMedCrossRefGoogle Scholar
  19. 19.
    Soderstrom M, Link H, Sun JB, Fredrikson S, Wang ZY, Huang WX (1994) Autoimmune T cell repertoire in optic neuritis and multiple sclerosis: T cells recognising multiple myelin proteins are accumulated in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 57: 544–551Google Scholar
  20. 20.
    Chou YK, Vainiene M, Whitham R, Bourdette D, Chou CH, Hashim G, Offner H, Vandenbark AA (1989) Response of human T lymphocyte lines to myelin basic protein: association of dominant epitopes with HLA class II restriction molecules. J Neurosci Res 23: 207–216PubMedCrossRefGoogle Scholar
  21. 21.
    Trotter JL, Hickey WF, van der Veen RC, Sulze L (1991) Peripheral blood mononuclear cells from multiple sclerosis patients recognize myelin proteolipid protein and selected peptides. J Neuroimmunol 33: 55–62PubMedCrossRefGoogle Scholar
  22. 22.
    Sun J, Link H, Olsson T, Xiao BG, Andersson G, Ekre HP, Linington C, Diener P (1991) T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 146: 1490–1495PubMedGoogle Scholar
  23. 23.
    Olsson T, Zhi WW, Hojeberg B, Kostulas V, Jiang YP, Anderson G, Ekre HP, Link H (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 86: 981–985PubMedCrossRefGoogle Scholar
  24. 24.
    Link H, Sun JB, Wang Z, Xu Z, Love A, Fredrikson S, Olsson T (1992) Virus-reactive and autoreactive T cells are accumulated in cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 38: 63–73PubMedCrossRefGoogle Scholar
  25. 25.
    Sun JB, Olsson T, Wang WZ, Xiao BG, Kostulas V, Fredrikson S, Ekre HP, Link H (1991) Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 21: 1461–1468PubMedCrossRefGoogle Scholar
  26. 26.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffmann RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357Google Scholar
  27. 27.
    Del Prete G, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, Ricci M, Romagnani S (1991) Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest 88: 346–350PubMedCrossRefGoogle Scholar
  28. 28.
    Erard F, Wild M-T, Garcia-Sanz JA, Le Gros G (1993) Switch of CD8 T cells to noncytolytic CD8–CD4- cells that make TH2 cytokines and help B cells. Science 260: 1802–1805PubMedCrossRefGoogle Scholar
  29. 29.
    Romagnani S (1991) Human TH1 and TH2 subsets: doubt no more. Immunol Today 12: 256–257PubMedCrossRefGoogle Scholar
  30. 30.
    Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr (1993) Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177: 57–68PubMedCrossRefGoogle Scholar
  31. 31.
    Haskins K, McDuffie M (1990) Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science 249: 1433–1436PubMedCrossRefGoogle Scholar
  32. 32.
    Nakajima H, Takamori H, Hiyama Y, Tsukada W (1990) The effect of treatment with interferon-gamma on type II collagen-induced arthritis. Clin Exp Immunol 81: 441–445PubMedCrossRefGoogle Scholar
  33. 33.
    Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793PubMedCrossRefGoogle Scholar
  34. 34.
    Hemmer B, Vergelli M, Tranquill L, Conlon P, Ling N, McFarland HF, Martin R (1997) Human T cell response to myelin basic protein peptide (83–99): extensive heterogeneity in antigen recognition, function and phenotype. Neurology 49: 1116–1126PubMedGoogle Scholar
  35. 35.
    Voskuhl RR, Martin R, Bergman C, Dalal M, Ruddle NH, McFarland HF (1993) T helper 1 (TH1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 15: 137–143PubMedCrossRefGoogle Scholar
  36. 36.
    Hemmer B, Vergelli M, Calabresi P, Huang T, McFarland HF, Martin R (1996) Cytokine phenotype of human autoreactive T cell clones specific for the immunodominant myelin basic protein peptide (83–99). J Neurosci Res 45: 852–862PubMedCrossRefGoogle Scholar
  37. 37.
    Hermans G, Stinissen P, Hauben L, Van den Berg-Loonen E, Raus J, Zhang J (1997) Cytokine profile of myelin basic protein-reactive T cells in multiple sclerosis and healthy individuals. Ann Neurol 42: 18–27Google Scholar
  38. 38.
    Correale J, Gilmore W, McMillan M, Li S, McCarthy K, Le T, Weiner LP (1995) Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 154: 2959–2968PubMedGoogle Scholar
  39. 39.
    Kozovska M, Zang YC, Aebischer I, Lnu S, Rivera VM, Crowe PD, Boehme SA, Zhang JZ (1998) T cell recognition motifs of an immunodominant peptide of myelin basic protein in patients with multiple sclerosis: structural requirements and clinical implications. Eur J Immunol 28: 1894–1901PubMedCrossRefGoogle Scholar
  40. 40.
    Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL (1997) Increased interleukin-12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 94: 599–603PubMedCrossRefGoogle Scholar
  41. 41.
    Correale J, McMillan M, Li S, McCarthy K, Le T, Weiner LP (1997) Antigen presentation by autoreactive proteolipid protein peptide-specific T cell clones from chronic progressive multiple sclerosis patients: roles of co-stimulatory B7 molecules and IL-12. J Neuroimmunol 72: 27–43PubMedCrossRefGoogle Scholar
  42. 42.
    Martino G, Consiglio A, Franciotta DM, Corti A, Filippi M,Vandenbroeck K, Sciacca FL, Comi G, Grimaldi LME (1997) Tumor necrosis factor a and its receptors (R1 and R2) in relapsing-remitting multiple sclerosis. J Neurol Sci 152: 51–61Google Scholar
  43. 43.
    Burns J, Rosenzweig A, Zweiman B, Lisak RP (1983) Isolation of myelin basic protein-reactive T cell lines from normal human blood. Cell Immunol 81: 435–440PubMedCrossRefGoogle Scholar
  44. 44.
    Martino G, Grohovaz F, Brambilla E, Codazzi F, Consiglio A, Clementi E, Filippi M, Comi G, Grimaldi LME (1998) Proinflammatory cytokines regulate antigen-independent T cell activation by two separate calcium-signaling pathways in multiple sclerosis patients. Ann Neurol 43: 340–349PubMedCrossRefGoogle Scholar
  45. 45.
    Meinl E, Hoch RM, Dornmair K, de Waal Malefyt R, Bontrop RE, Jonker M, Lassmann H, Hohlfeld R, Wekerle H, ‘t Hart BA (1997) Encephalitogenic potential of myelin basic protein-specific T cells isolated from normal rhesus macaques. Am J Pathol 150: 445–453Google Scholar
  46. 46.
    Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet I: 893–895Google Scholar
  47. 47.
    Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of MS with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37: 1097–1102PubMedGoogle Scholar
  48. 48.
    Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78: 318–323PubMedCrossRefGoogle Scholar
  49. 49.
    Unutmaz D, Pileri P, Abrignani S (1994) Antigen-independent activation of naive and memory resting T cells by a cytokine combination. J Exp Med 180: 1159–1164PubMedCrossRefGoogle Scholar
  50. 50.
    Tough DF, Borrow P, Sprent J (1996) Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272: 1947–1950PubMedCrossRefGoogle Scholar
  51. 51.
    Martino G, Clementi E, Brambilla E, Moiola L, Comi G, Meldolesi J, Grimaldi LME (1994) y-Interferon activates a previously undescribed Cat+ influx in T lymphocytes from patients with multiple sclerosis. Proc Natl Acad Sci USA 91: 4825–4829Google Scholar
  52. 52.
    Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933–936PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 1999

Authors and Affiliations

  • R. Furlan
  • P. L. Poliani
  • A. Bergami
  • M. Gironi
  • G. Desina
  • G. Martino

There are no affiliations available

Personalised recommendations