Levels of platelet-activating factor in cerebrospinal fluid and plasma of patients with relapsing-remitting multiple sclerosis

  • M. Arese
  • L. Callea
  • C. Ferrandi
  • F. Bussolino
Conference paper


Platelet-activating factor (PAF), a mediator of homotypic and heterotypic cell-to-cell communication, activates inflammatory cells and lymphocytes through a seven-spanning transmembrane domain receptor [1, 2]. Following appropriate stimulation, it is produced and released by monocytes, neutrophils, endothelial cells and T lymphocytes [3–8]. It is also produced by neurons and glial cells stimulated by neurotransmitters and tumor necrosis factor (TNF)-α, respectively [9, 10]. Vascular endothelium is a key target for PAF. It modifies the barrier function of a monolayer of endothelial cells in vitro [11, 12], is a powerful vasopermeabilizing molecule in vivo [13, 14], and promotes leukocyte adhesion and transmigration [15–17]. High PAF concentrations are toxic for endothelial cells, causing vacuolization and marked formation of blebs [12, 18].


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Experimental Allergic Encephalomyelitis Glyceryl Ether Expand Disability Status Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bussolino F, Camussi G (1995) Platelet-activating factor produced by endothelial cells. A molecule with autocrine and paracrine properties. Eur J Biochem 229: 327–337PubMedCrossRefGoogle Scholar
  2. 2.
    McManus LM, Woodard DS, Deavers SI, Pinckard RN (1993) PAF molecular heterogeneity: pathobiological implications. Lab Invest 69: 639–650PubMedGoogle Scholar
  3. 3.
    Lotner GZ, Lynch JM, Betz SJ, Henson PM (1980) Human neutrophilderived platelet activating factor. J Immunol 124: 676–684PubMedGoogle Scholar
  4. 4.
    Camussi G, Aglietta M, Coda R, Bussolino F, Piacibello W, Tetta C (1981) Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: monocytes, polymorphonuclear neutrophils and basophils. Immunology 42: 191–199PubMedGoogle Scholar
  5. 5.
    Camussi G, Aglietta M, Malavasi F, Tetta C, Piacibello W, Sanavio F, Bussolino F (1983) The release of platelet activating factor from human endothelial cells in culture. J Immunol 131: 2397–2403PubMedGoogle Scholar
  6. 6.
    Camussi G, Bussolino F, Salvidio G, Baglioni C (1987) Tumor necrosis factor/cachectin stimulates peritoneal macrophages, polymorphonuclear neutrophils, and vascular endothelial cells to synthesize and release platelet-activating factor. J Exp Med 166: 1390–1404PubMedCrossRefGoogle Scholar
  7. 7.
    Bussolino F, Camussi G, Baglioni C (1988) Synthesis and release of platelet-activating factor by human vascular endothelial cells treated with tumor necrosis factor or interleukin-la. J Biol Chem 263: 11856–11861PubMedGoogle Scholar
  8. 8.
    Le Gouvello S, Vivier E, Debre P, Thomas Y, Colard 0 (1992) CD2 triggering stimulates the formation of platelet activating factor-acether from alkylarachinoyl-glycerophosphocholine in a human CD4+ T lymphocyte clone. J Immunol 149: 1289–1293Google Scholar
  9. 9.
    Jaranowska A, Bussolino F, Sogos V, Arese M, Lauro GM, Gremo F (1995) Platelet-activating factor production by human fetal microglia. Effect of lipopolysaccharides and tumor necrosis factor-a. Mol Chem Neuropathol 24: 95–106Google Scholar
  10. 10.
    Sogos V, Bussolino F, Pilia E, Torelli S, Gremo F (1990) Acetylcholine induced production of platelet activating factor by human fetal brain cells in culture. J Neurosci Res 27: 706–711PubMedCrossRefGoogle Scholar
  11. 11.
    Bussolino F, Silvagno F, Garbarino G, Costamagna C, Sanavio F, Arese M, Soldi R, Aglietta M, Pescarmona G, Camussi G, Bosia A (1994) Human endothelial cells are targets for platelet-activating factor ( PAF ). Activation of alpha and beta protein kinase C isozymes in endothelial cells stimulated by PAR J Biol Chem 269: 2877–2886Google Scholar
  12. 12.
    Bussolino F, Camussi G, Aglietta M, Braquet P, Bosia A, Pescarmona G, Sanavio F, D’Urso N, Marchisio PC (1987) Human endothelial cells are targets for endothelial cells. I. Platelet activating factor induces changes in cytoskeleton structure. J Immunol 139: 2439–2446Google Scholar
  13. 13.
    Handley DA, Arbeeny CM, Lee ML, van Valen RG, Saunders RN (1984) Effect of platelet activating factor on endothelial permeability to macromolecules. Immunopharmacology 8: 137–144PubMedCrossRefGoogle Scholar
  14. 14.
    Humphrey DM, McManus LM, Satouchi K, Hanahan DJ, Pinckard RN (1982) Vasoactives properties of acetyl glyceryl ether phosphorylcholine and analogs. Lab Invest 46: 422–427PubMedGoogle Scholar
  15. 15.
    Kuijpers TW, Hakkert BC, Hart MHL, Roos D (1992) Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8. J Cell Biol 117: 565–572PubMedCrossRefGoogle Scholar
  16. 16.
    Lorant DE, Topham MK, Whatley RE, McEver RP, McIntyre TM, Prescott SM, Zimmerman GA (1993) Inflammatory roles of P-selectin. J Clin Invest 92: 559–570PubMedCrossRefGoogle Scholar
  17. 17.
    Renkonen R, Mattila P, Ustinov J (1990) Signal transduction during platelet-activating factor-induced lymphocyte binding to endothelial cells. Scand J Immunol 31: 523–527PubMedCrossRefGoogle Scholar
  18. 18.
    Bourgain RH, Mael L, Braquet P, Andries R, Touqui L, Braquet M (1985) The effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine on the arterial wall. Prostaglandins 30: 185–197PubMedCrossRefGoogle Scholar
  19. 19.
    Callea L, Arese M, Orlandini A, Bargnani C, Priori A, Bussolino F (1999) Platelet activating factor is elevated in cerebral spinal fluid and plasma or patients with relapsing-remitting multiple sclerosis. J Immunol 94: 212–221Google Scholar
  20. 20.
    Brochet B, Orgogozo JM, Guinot P, Dartigues JF, Henry P, Loiseau P (1992) Pilot study of ginkgolide B, a PAF-acether specific inhibitor in the treatment of acute outbreaks of multiple sclerosis. Rev Neurol 148: 299–301PubMedGoogle Scholar
  21. 21.
    Brochet B, Guinot P, Orgogozo JM, Conavreux C, Rumbach L, Lavergne V (1995) Double blind placebo controlled multicentre study of ginkgolide B in treatment of acute exacerbations of multiple sclerosis. The Ginkgolide Study Group in Multiple Sclerosis. J Neurol Neurosurg Psychiatry 58: 360–362Google Scholar
  22. 22.
    Howat DW, Chand N, Braquet P, Willoughby DA (1989) An investigation into the possible involvement of platelet activating factor in experimental allergic encephalomyelitis in rats. Agents Actions 27: 473–476PubMedCrossRefGoogle Scholar
  23. 23.
    Vela L, Garcia Merino A, Fernandez-Gallardo S, Sanchez Crespo M, Lopez Lozano JJ, Saus C (1991) Platelet-activating factor antagonists do not protect against the development of experimental autoimmune encephalomyelitis. J Neuroimmunol 33: 81–86PubMedCrossRefGoogle Scholar
  24. 24.
    Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13: 227–231PubMedCrossRefGoogle Scholar
  25. 25.
    Farr RS, Cox CO, Wardlow ML, Meng KE, Green DE (1983) Human serum acid-labile factor is an acetylhydrolase that inactivates platelet-activating factor. Fed Proc 42: 3120–3122PubMedGoogle Scholar
  26. 26.
    Adams CWM, Poston RN, Burk SJ, Sidhu YS, Vipond H (1985) Inflammatory vasculitis in multiple sclerosis. J Neurol Sci 69: 269–283PubMedCrossRefGoogle Scholar
  27. 27.
    Guseo A, Jellinger K (1975) The significance of perivascular infiltrations in multiple sclerosis. J Neurol 211: 51–60PubMedCrossRefGoogle Scholar
  28. 28.
    Kermode AG, Thompson AJ, Tofts P, MacManus DG, Hendall BE, Kingsley DPE, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Brain 113: 1477–1489PubMedCrossRefGoogle Scholar
  29. 29.
    Moor ACE, DeVries HE, DeBoer AG, Breimer DD (1994) The blood-brain barrier and multiple sclerosis. Biochem Pharmacol 47: 1717–1724PubMedCrossRefGoogle Scholar
  30. 30.
    Dore-Duffy P, Newman W, Balabanov R, Lisak RP, Rothlein R, Peterson M (1995) Circulating, soluble adhesion proteins in cerebrospinal fluid and serum of patients with multiple sclerosis: correlation with clinical activity. Ann Neurol 37: 55–62PubMedCrossRefGoogle Scholar
  31. 31.
    Merril JE, Benveniste EN (1996) Cytokine in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19: 331–338CrossRefGoogle Scholar
  32. 32.
    Verbeek MM, Westphal JR, Ruiter DJ, de Waal RM (1995) T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interaction. J Immunol 154: 5876–5884PubMedGoogle Scholar
  33. 33.
    Hartung HP, Reiners K, Archelos JJ, Michels M, Heidenreich F, Pflughaupt KW, Toyka KV (1995) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol 38: 186–193PubMedCrossRefGoogle Scholar
  34. 34.
    Lou J, Chofflon M, Juillard C, Donati Y, Mili N, Siegrist CA, Grau GE (1997) Brain microvascular endothelial cells and leukocytes derived from patients with multiple sclerosis exhibit increased adhesion capacity. Neuroreport 8: 629–633PubMedCrossRefGoogle Scholar
  35. 35.
    Soilu-Hanninen M, Roytta M, Salmi A, Salonen R (1997) Therapy with antibody against leukocyte integrin VLA-4 (CD49d) is effective and safe in virus facilitated experimental allergic encephalomyelitis. Neuroimmunology 72: 95–105CrossRefGoogle Scholar
  36. 36.
    Biddison WE, Cruikshank WW, Center DM, Connor EW, Honma K (1997) Chemokine and matrix metalloproteinase secretion by myelin proteolipidspecific CD8+ T cells: potential roles in inflammation. J Immunol 158: 3046–3053Google Scholar
  37. 37.
    Hurst RD, Fritz IB (1996) Nitric oxide-induced perturbations in a cell culture model of the blood-brain barrier. J Cell Physiol 167: 81–88PubMedCrossRefGoogle Scholar
  38. 38.
    Lin RF, Lin TT, Tilton RG, Cross AH (1993) Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic study. J Exp Med 178: 643–648PubMedCrossRefGoogle Scholar
  39. 39.
    Cross AH, Misko TP, Lin RF, Hickey WF, Trotter JL, Tilton RG (1994) Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 93: 2684–2690PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson AW, Land JM, Bolanos JP, Clark JB, Heales SIR (1995) Evidence for increased nitric oxide production in multiple sclerosis. J Neurol Neurosurg Psychiatry 58: 107PubMedCrossRefGoogle Scholar
  41. 41.
    Morgan BP, Gasque P (1996) Expression of complement in the brain: role in health and disease. Immunol Today 17: 461–466PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 1999

Authors and Affiliations

  • M. Arese
  • L. Callea
  • C. Ferrandi
  • F. Bussolino

There are no affiliations available

Personalised recommendations