Neuronal control of the immunological microenvironment in the CNS: implications on neuronal cell death and survival

  • H. Neumann
  • T. Misgeld
  • I. Medana
Conference paper


The central nervous system (CNS) has an immunoprivileged status. In the healthy CNS, class I as well as class II major histocompatibility (MHC) molecules are virtually absent. Heterodimeric MHC molecules are essential for the initiation, propagation and effector phases of antigen-specific immune responses. Endogenous and exogenous antigenic peptides are presented via MHC molecules to T lymphocytes to enable cognate interactions. While MHC molecules are absent in the intact CNS, they are inducible on different brain cell types during inflammatory or neurodegenerative diseases. Recent evidence for the involvement of neurons in the regulation of MHC expression emerged from several studies using neuronal transection models. These models permit the analysis of cellular responses occurring locally, as well as those distant from the primary lesion, without interfering with the blood-brain barrier.


Major Histocompatibility Complex Nerve Growth Factor Vasoactive Intestinal Polypeptide Major Histocompatibility Complex Molecule Neuronal Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Streit WJ, Graeber MB, Kreutzberg GW (1989) Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol 21: 117–123PubMedCrossRefGoogle Scholar
  2. 2.
    Finsen BR, Tönder N, Xavier GF, Sörensen JC, Zimmer J (1993) Induction of microglial immunomolecules by anterogradely degenerating mossy fibers in the rat hippocampal formation. J Chem Neuroanat 6: 276–275CrossRefGoogle Scholar
  3. 3.
    Raivich G, Jones LL, Kloss CUA, Werner A, Neumann H, Kreutzberg GW (1998) Immune surveillance in the injured nervous system: T lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18: 5804–5816PubMedGoogle Scholar
  4. 4.
    Maehlen J, Olsson T, Zachau A, Klareskog L, Kristenssen K (1989) Local enhancement of major histocompatibility complex ( MHC) class I and class II expression and cell infiltration in experimental allergic encephalomyelitis around axotomized motor neurons. J Neuroimmunol 23: 125–132PubMedCrossRefGoogle Scholar
  5. 5.
    Hickey WF (1991) Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol 1: 97106CrossRefGoogle Scholar
  6. 6.
    Tchélingérian J-L, Quinonero J, Booss J, Jacque C (1993) Localization of TNF-a and IL-l3 immunoreactivities in striatal neurons after surgical injury to the hippocampus. Neuron 10: 213–224PubMedCrossRefGoogle Scholar
  7. 7.
    Neumann H, Schmidt H, Wilharm E, Behrens L, Wekerle H (1997) Interferon-y gene expression in sensory neurons: Evidence for autocrine gene regulation. J Exp Med 186: 2023–2031PubMedCrossRefGoogle Scholar
  8. 8.
    Neumann H, Boucraut J, Hahnel C, Misgeld T, Wekerle H (1996) Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 8: 2582–2590PubMedCrossRefGoogle Scholar
  9. 9.
    Dani JW, Chernjayski A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440PubMedCrossRefGoogle Scholar
  10. 10.
    Lee SC, Collins M, Vanguri P, Shin ML (1992) Glutamate differentially inhibits the expression of class II MHC antigens on astrocytes and microglia. J Immunol 148: 3391–3397PubMedGoogle Scholar
  11. 11.
    Frohman EM, Vayuvegula B, Gupta S, Van den Noort S (1988) Norepinephrine inhibits y-interferon-induced histocompatibility class II (Ia) antigen expression on cultured astrocytes via ß2-adrenergic signal transduction mechanisms. Proc Natl Acad Sci USA 85: 1292–1296PubMedCrossRefGoogle Scholar
  12. 12.
    Frohman EM, Frohman TC, Vayuvegula B, Gupta S, Van den Noort S (1988) Vasoactive intestinal polypeptide inhibits the expression of the MHC class II antigens on astrocytes. J Neurol Sci 88: 339–346PubMedCrossRefGoogle Scholar
  13. 13.
    Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit class II inducibility of microglia: Involvement of the p75 receptor. Proc Natl Acad Sci USA 95: 5779–5784PubMedCrossRefGoogle Scholar
  14. 14.
    Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270: 593–598PubMedCrossRefGoogle Scholar
  15. 15.
    Neumann H, Cavalié A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269: 549–552PubMedCrossRefGoogle Scholar
  16. 16.
    Neumann H, Schmidt H, Cavalié A, Jenne D, Wekerle H (1997) MHC class I gene expression in single neurons of the central nervous system: Differential regulation by interferon-y and tumor necrosis factor-a. J Exp Med 185: 305–316PubMedCrossRefGoogle Scholar
  17. 17.
    Corriveau RA, Huh GS, Shatz CJ (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21: 505–520PubMedCrossRefGoogle Scholar
  18. 18.
    Neumann H, Wekerle H (1998) Neuronal control of the immune response in the central nervous system: Linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol 58: 1–9CrossRefGoogle Scholar
  19. 19.
    Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB (1998) Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 4: 1321–1324PubMedCrossRefGoogle Scholar
  20. 20.
    Hickey WF, Ueno K, Hiserodt JC, Schmidt RE (1992) Exogenously-induced, natural killer cell-mediated neuronal killing- A novel pathogenetic mechanism. J Exp Med 176: 811–817PubMedCrossRefGoogle Scholar
  21. 21.
    Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-D-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22: 2429–2436PubMedCrossRefGoogle Scholar
  22. 22.
    Frade TM, Barde YA (1998) Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20: 35–41PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12: 139–153PubMedCrossRefGoogle Scholar
  24. 24.
    Rensing-Ehl A, Malipiero U, Irmler M, Tschopp J, Constam D, Fontana A (1996) Neurons induced to express major histocompatibility complex class I antigen are killed via the perforin and not the Fas (Apo-1/CD95) pathway. Eur J Immunol 26: 2271–2274PubMedCrossRefGoogle Scholar
  25. 25.
    Rabchevsky AG, Streit WJ (1997) Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47: 34–48PubMedCrossRefGoogle Scholar
  26. 26.
    Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4: 814–821PubMedCrossRefGoogle Scholar
  27. 27.
    Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5: 49–55PubMedCrossRefGoogle Scholar
  28. 28.
    Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330: 658–659PubMedCrossRefGoogle Scholar
  29. 29.
    Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglia cells. J Neurochem 70: 699–707PubMedCrossRefGoogle Scholar
  30. 30.
    Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2: 788–794PubMedCrossRefGoogle Scholar
  31. 31.
    Schwartz M, Solomon A, Lavie V, Ben-Bassat S, Belkin M, Cohen A (1991) Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Res 545: 334–338PubMedCrossRefGoogle Scholar
  32. 32.
    Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T cell clones. Proc Natl Acad Sci USA 90: 10984–10988PubMedCrossRefGoogle Scholar
  33. 33.
    Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/ macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16: 2508–2521PubMedGoogle Scholar
  34. 34.
    Kerschensteiner M, Gallmeier E, Behrens L, Klinkert WEF, Kolbeck R, Hoppe E, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells and monocytes produce brain-derived neurotrophic factor ( BDNF) in vitro and in brain lesions: A neuroprotective role of inflammation? J Exp Med 189: 865–870PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 1999

Authors and Affiliations

  • H. Neumann
  • T. Misgeld
  • I. Medana

There are no affiliations available

Personalised recommendations