The affinity spectrum of myelin basic protein-reactive T cells

  • B. Mazzanti
  • E. Traggiai
  • B. Hemmer
  • R. Martin
  • L. Massacesi
  • M. Vergelli
Conference paper


The breakdown of the immunological tolerance to myelin components is probably crucial in the pathogenesis of multiple sclerosis (MS). Even if the target autoantigen is yet unknown, myelin basic protein (MBP) has been studied in greatest detail [1, 2].


Multiple Sclerosis Multiple Sclerosis Patient Myelin Basic Protein Antigen Recognition Antigen Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153–187PubMedCrossRefGoogle Scholar
  2. 2.
    Hohlfeld R (1997) Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain 120: 859–916CrossRefGoogle Scholar
  3. 3.
    Burns J, Rosenzweig A, Zweiman B, Lisak RP (1983) Isolation of myelin basic protein-reactive T cell lines from normal human blood. Cell Immunol 81: 435–440PubMedCrossRefGoogle Scholar
  4. 4.
    Pette M, Fujita K, Kitze B, Whitaker JN, Albert E, Kappos L, Wekerle H (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40: 1770–1776PubMedGoogle Scholar
  5. 5.
    Schlüsener H, Wekerle H (1985) Autoaggressive T lymphocyte lines recognize the encephalitogenic region of myelin basic protein; in vitro selection from unprimed rat T lymphocyte populations. J Immunol 135: 3128–3133Google Scholar
  6. 6.
    Genain CP, Lee-Parritz D, Nguyen M-H, Massacesi L, Joshi N, Ferrante R, Hoffman K, Moseley M, Letvin NL, Hauser SL (1994) In healthy primates, circulating autoreactive T cells mediate autoimmune disease. J Clin Invest 94: 1339–1345PubMedCrossRefGoogle Scholar
  7. 7.
    Steinman L, Waisman A, Altman D (1995) Major T cells responses in multiple sclerosis. Mol Med/Today 1: 79–83Google Scholar
  8. 8.
    Wucherpfennig KW, Weine HL, Hafler DA (1991) T cells recognition of myelin basic protein. Immunol Today 12: 277–282PubMedCrossRefGoogle Scholar
  9. 9.
    Martin R, McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32: 121–182PubMedCrossRefGoogle Scholar
  10. 10.
    Hemmer B, Vergelli M, Tranquill L, Conlon P, Ling N, McFarland HF, Martin R (1997) Human T cell response to myelin basic protein peptide (83–99): extensive heterogeneity in antigen recognition, function and phenotype. Neurology 49: 1116–1126PubMedGoogle Scholar
  11. 11.
    Kersh G, Allen PM (1996) Essential flexibility in the T cell recognition of antigen. Nature 380: 495–498PubMedCrossRefGoogle Scholar
  12. 12.
    Hemmer B, Vergelli M, Pinilla C, Houghten RA, Martin R (1998) Probing degeneracy in T cell recognition using peptide combinatorial libraries–Importance for T cell survival and autoimmunity. Immunol Today 19: 163–168PubMedCrossRefGoogle Scholar
  13. 13.
    Mason D (1998) A very high level of crossreactivity is an essential feature of the T cell receptor. Immunol Today 19: 395–404PubMedCrossRefGoogle Scholar
  14. 14.
    Vergelli M, Hemmer B, Kalbus M, Vogt AB, Ling N, Conlon P, Coligan JE, McFarland HF, Martin R (1997) Modifications of peptide ligands enhancing T cell responsiveness suggest a broad spectrum of stimulatory ligands for autoreactive T cells J Immunol 58: 3746–3752Google Scholar
  15. 15.
    Hemmer B, Vergelli M, Gran B, Ling N, Conlon P, Pinilla C, Houghten R, McFarland HF, Martin R (1998) Predictable T cell receptor antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology. J Immunol 160: 3631–3636PubMedGoogle Scholar
  16. 16.
    Hemmer B, Fleckenstein BT, Vergelli M, Jung W, McFarland HF, Martin R, Wiesmuller KH (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 185: 1651–1659PubMedCrossRefGoogle Scholar
  17. 17.
    Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K (1995) Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med 182: 1591–1596PubMedCrossRefGoogle Scholar
  18. 18.
    Kersh GJ, Donermeyer DL, Frederick KE, White JM, Hsu BL Allen PM (1998) TCR transgenic mice in which usage of transgenic alpha-and beta-chains is highly dependent on the level of selecting ligand. J Immunol 161: 585–593PubMedGoogle Scholar
  19. 19.
    Rogers PR, Huston G, Swain SL (1998) High antigen density and IL-2 are required for generation of CD4 effectors secreting Thl rather than Th0 cytokines. J Immunol 161: 3844–3852PubMedGoogle Scholar
  20. 20.
    Vergelli M, Hemmer B, Utz U, Vogt A, Kalbus M, Tranquill L, Conlon P, Ling N, Steinmann L, McFarland HF, Martin R (1996) Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87–99). Eur J Immunol 26: 2624–2634PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 1999

Authors and Affiliations

  • B. Mazzanti
  • E. Traggiai
  • B. Hemmer
  • R. Martin
  • L. Massacesi
  • M. Vergelli

There are no affiliations available

Personalised recommendations