Advertisement

In Vivo Experimental Methods for Assessing Muscle Tone Involvement in Bronchial Constriction

  • P. C. Braga

Abstract

Tests of pulmonary mechanical function provide information about the state of the lungs, both airways and parenchyma, and about smooth muscle involvement in asthma. Information about the latter can be obtained from measurements in laboratory animals. Several in vivo techniques have been described for the investigation of pulmonary function; these can also be used to study the effects of drugs in reversible airways disease.

Keywords

Airway Resistance Smooth Muscle Tone Body Plethysmograph Intrapleural Pressure Dynamic Lung Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berendt RF (1968) The effect of physical and chemical restraint on selected respiratory parameters of macace mulatta. Lab Anim Care 18: 391–394PubMedGoogle Scholar
  2. 2.
    Richardson PS, Widdicombe JG (1969) The role of the vagus nerve in the ventilatory responses to hypercapnia and hypoxia in anesthetized and unanesthetized rabbits. Respir Physiol 7: 122–135PubMedCrossRefGoogle Scholar
  3. 3.
    Dixon W, Brodie TG (1903) Contribution to the physiology of the lungs. I. The bronchial muscles, their innervation, and the action of drugs upon them. J Physiol 24: 97–173Google Scholar
  4. 4.
    Dale HH, Laidlaw PP (1910) The physiological action of ß-imidazolylethylamine. J Physiol 41: 318–344PubMedGoogle Scholar
  5. 5.
    Konzett H, Rossler R (1940) Versuchsanordnung zu Untersuchungen an der Bronchialmuskulatur. Naunyn-Schmiedebergs Arch Pharmakol 195: 71–74CrossRefGoogle Scholar
  6. 6.
    Amdur MO, Mead J (1958) Mechanics of respiration in unanesthetized guinea-pigs. Am J Physiol 192: 364–368PubMedGoogle Scholar
  7. 7.
    Neerrgard K, Wirz K (1927) Die Messung der Strömungswiderstände in den Atemwegen des Menschen, insbesondere beim Asthma and Emphysem. Z Clin Med 105: 51–82Google Scholar
  8. 8.
    Guyton AC (1947) Measurement of the respiratory volumes of laboratory animals. J Appl Physiol 150: 70–77Google Scholar
  9. 9.
    Ekberg DR, Hance HE (1960) Respiration measurements in mice. J Appl Physiol 15: 321–324PubMedGoogle Scholar
  10. 10.
    Mead J (1960) Control of respiratory frequency. J Appl Physiol 15: 325–336Google Scholar
  11. 11.
    Crosfill ML, Widdicombe JG (1961) Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J Physiol 158: 1–14PubMedGoogle Scholar
  12. 12.
    Douglas JS, Dennis MW, Ridgway P, Bouhuys A (1972) Airway dilatation and constriction in spontaneously breathing guinea pigs. J Pharmacol Exp Ther 180: 98–109PubMedGoogle Scholar
  13. 13.
    Dennis MW, Douglas JS, Casby JU, Stolwijk JA, Bouhuys J (1969) On-line analog computer for dynamic lung compliance and pulmonary resistance. J Appl Physiol 26: 248–252PubMedGoogle Scholar
  14. 14.
    Comroe JH, Nisell OI, Nims RG (1954) A simple method for concurrent measurement of compliance and resistance to breathing in anesthetized animals and man. J Appl Physiol 7: 225–228PubMedGoogle Scholar
  15. 15.
    Amdur MO (1959) The physiologic responses of guinea pigs to atmospheric pollutants. Int J Air Pollut 1: 170–183PubMedGoogle Scholar
  16. 16.
    Amdur MO (1966) Respiratory absorption data and S02-response curves. Arch Environ Health 12: 729–732PubMedGoogle Scholar
  17. 17.
    Amdur MO, Dubriel M, Creasia DA (1978) Respiratory response of guinea pigs to low levels of sulphuric acid. Environ. Res. 15: 418–423PubMedCrossRefGoogle Scholar
  18. 18.
    Costa DL, Amdur MO (1979) Effect of oil mists on irritancy of sulphyr dioxide. I. Mineral oil and light lubricating oil. Am Ind Hyg Assoc J 40: 680–785PubMedCrossRefGoogle Scholar
  19. 19.
    Costa DL, Amdur MO (1979) Respiratory response of guinea pigs to oil mists. Am Ind Hyg Assoc J 40: 673–679PubMedCrossRefGoogle Scholar
  20. 20.
    Nayler RA, Mitchell HW (1987) Airways hypereactivity and bronchoconstriction induced by vanadate in the guinea-pig. Br J Pharmacol 92: 173–180PubMedGoogle Scholar
  21. 21.
    Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 5: 779–796Google Scholar
  22. 22.
    Drazen JM, Loring SH, Regan R (1976) Validation of an automated determination of pulmonary resistance by electrical subtraction. J Appl Physiol 40: 110–114PubMedGoogle Scholar
  23. 23.
    Fry DL, Stead WW, Ebert RW, Lulbin RI, Wells HS (1952) The measurement of intraesophageal pressure and its relationship to intrathoracic pressure. J Lab Clin Med 40: 664–673PubMedGoogle Scholar
  24. 24.
    Cherniak RM, Farhi LE, Armstrong BW, Proctor DF (1956) A comparison of esophageal and intrapleural pressure in man. J Appl Physiol 8: 203–211Google Scholar
  25. 25.
    Palace KF (1969) Measurement of ventilatory mechanics in the rat. J Appl Physiol 27: 149–156Google Scholar
  26. 26.
    Koo KW, Leith DE, Shester CB, Snider GL (1976) Respiratory mechanics in normal hamsters. J Appl Physiol 40: 936–942PubMedGoogle Scholar
  27. 27.
    Skornik WA, Heimann R, Jaeger RJ (1981) Pulmonary mechanics in guinea pigs: repeated measurements using a nonsurgical computerized method. Toxicol Appl Pharmacol 59: 314–323PubMedCrossRefGoogle Scholar
  28. 28.
    Vinegar A, Sinnett E, Kosch PC (1982) Respiratory mechanics of small carnivore: the ferret. J Appl Physiol 52: 832–837PubMedGoogle Scholar
  29. 29.
    Gjuris V, Heicke R, Westermann E (1964) Über die Stimulierung der Atmung durch Bradykinin and Kallidin. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 247: 429–444PubMedCrossRefGoogle Scholar
  30. 30.
    Koller EA (1962) Die Wirkung von Micoren auf Atmung and Blutdruck. Heiv Physiol Acta 20: 47–102Google Scholar
  31. 31.
    Johanson WG Jr, Pierce AK (1971) A noninvasive technique for measurement of airway conductance in small animals. J Appl Physiol 30: 146–150PubMedGoogle Scholar
  32. 32.
    Gordont B, Pistorius D (1974) Tierexperimentelle Lungenfunktions-analysen während Inhalation von Zinkoxidstaub. Zentralbl. Bakteriol (Naturwiss, Abt 1) A277: 166–120Google Scholar
  33. 33.
    Dorsch W, Waldherr U, Rosmanith J (1981) Continuous recording of intrapulmonary “compressed air” as a sensitive noninvasive method of measuring bronchial obstruction in guinea-pigs. Pflügers Arch 391: 236–241PubMedCrossRefGoogle Scholar
  34. 34.
    Costa DL, Tepper JS (1988) Approaches to lung function assessment in small mammals. In: Gardner DE, Crapo JD, Massaro EJ (eds) Toxicology of the lung. Raven, New York, pp 147–174Google Scholar
  35. 35.
    O’Neil JJ, Raub JA (1984) Pulmonary function testing in small laboratory mammals. Environ Health Perspect 56: 11–22PubMedCrossRefGoogle Scholar
  36. 36.
    Sinnett EE, Jackson AC, Leith DE, Butler JP (1981) Fast integrated flow plethysmograph for small mammals. J Appl Physiol 50: 1104–1110PubMedGoogle Scholar
  37. 37.
    Jackson AC, Vinegar A (1979) A technique for measuring frequency response of pressure, volume and flow-transducers. J Appl Physiol 47: 462–467PubMedGoogle Scholar
  38. 38.
    Chapin JL (1954) Ventilatory response of the unrestrained and unanesthetized hamster to CO,. Am J Physiol 17: 146–148Google Scholar
  39. 39.
    Drorbaugh JE, Fenn WO (1955) A barometric method for mesuring ventilation in newborn infants. Pediatrics 16: 81–86PubMedGoogle Scholar
  40. 40.
    Chapin H (1954) The ventilatory response of the unrestrained hamster to carbon-dioxide. Am J Physiol 179: 146–148PubMedGoogle Scholar
  41. 41.
    Drobaugh JE, Fenn WO (1955) A barometric method for measuring ventilation in newborn infants. Pediatrics 16: 81–87Google Scholar
  42. 42.
    Bargeton D, Gauge P (1959) Observation barometrique de la ventilation pulmonaire chez l’homme sous contact instrumental. J Physiol 51: 395–396Google Scholar
  43. 43.
    Wong KL, Alaire Y (1982) A method for repeated evaluation of pulmonary performance in unanesthetized, unrestrained guinea pigs and its application to detect effects of sulfuric acid mist inhalation. Toxicol Appl Pharmacol 63: 72–90PubMedCrossRefGoogle Scholar
  44. 44.
    Jacky JP (1978) A plethysmograph for long-term mesurements of ventilation in unrestrained animal. J Appl Physiol 45: 644–647PubMedGoogle Scholar
  45. 45.
    Karol MH, Stadler J, Underhill D, Alayre Y (1981) Monitoring delayed-onset pulmonary hypersensitivity in guinea pigs. Toxicol Appl Pharmacol 61: 277–285PubMedCrossRefGoogle Scholar
  46. 46.
    Kokka N, Elliott HW, Way WL (1965) Some effects of morphine on respiration and metabolism of rats. J Pharmacol Exp Ther 148: 386–392PubMedGoogle Scholar
  47. 47.
    Nelson RB, Elliott MW (1967) A comparison of some central effects of morphine, morphinone and the brain on rats and mice. J Pharmacol Exp Ther 155: 516–520PubMedGoogle Scholar
  48. 48.
    Oktay S, Onur R, Ilhan M, Turker RK (1981) Potentiation of the morphine-in-duced respiratory rate depression by captopril: Eur J Pharmacol 70: 257–262PubMedCrossRefGoogle Scholar
  49. 49.
    Kigasawa K, Saitoh K, Tanizaki A, Ohkubo K, Iirino O (1984) A new method for measuring respiration in the conscious mouse. J Pharmacol Methods 12: 183–189PubMedCrossRefGoogle Scholar
  50. 50.
    Tattersfield AE, Keeping IM (1981) Assessing change in airway calibre-measurement of airway resistance. In: Howell JL, Tattersfield AE (eds) Respiratory system — methods in clinical pharmacology, vol 2. MacMillan, New York, pp 25–38Google Scholar
  51. 51.
    Agrawal KP (1981) Specific airway conductance in guinea pigs: normal values and histamine induced fall. Respir Physiol 43: 23–30PubMedCrossRefGoogle Scholar
  52. 52.
    Von Neergaard J, Wirz K (1927) Die Messung der Strömungswiderstände in den Atemwegen der Menschen, insbesondere bei Asthmas and Emphysema. Z Klin Med 105: 51–82Google Scholar
  53. 53.
    Du Bois AB, Botelho SY, Comroe JH (1956) A new method for measuring airway resistance in man using a body plethysmograph. J Clin Invest 35: 327–325CrossRefGoogle Scholar
  54. 54.
    Bargeton G, Barres G, Lefebvre des Noettes, Gauge P (1957) Resistance des voies aeriennes de l’homme au cours du cycle respiratoire. C R Soc Biol 151: 427–432Google Scholar
  55. 55.
    Jaeger MJ, Ottis AB (1964) Measurement of airway resistance with a volume displacement body plethysmograph. J Appl Physiol 19: 813–820PubMedGoogle Scholar
  56. 56.
    Agrawal KP, Kumar A (1980) Fall in specific airway conductance at residual volume in small airway obstruction. Respir Physiol 40: 65–78PubMedCrossRefGoogle Scholar
  57. 57.
    Clay TP, Thompson MA (1983) Plethysmographic determination of histamine independent lung dysfunction following antigen provocation of conscious guinea-pigs. Br J Pharmacol 79: 418 PGoogle Scholar
  58. 58.
    Griffiths-Johnson DA, Nicholls PJ, McDermott M (1988) Measurement of specific airway conductance in guinea pigs. A noninvasive method. J Pharmacol Methods 19: 233–242PubMedCrossRefGoogle Scholar
  59. 59.
    Matijak-Schaper M, Wong KL, Alaire Y (1983) A method to rapidly evaluate the acute pulmonary effects of aerosols in unanesthetized guinea pigs. Toxicol Appl Pharmacol 69: 451–460PubMedCrossRefGoogle Scholar
  60. 60.
    Pennock BE (1987) A double flow body plethysmograph for measuring specific airflow conductance. In: Zink R (ed) Mess-and Auswerteanlage zur Bestimmung von Parametern der Atemmechanik. Atmung and Beamtung Biomesstechnik. Sachs, Freiburg, pp 75–104Google Scholar
  61. 61.
    Lomask MR (1987) Respiratory mechanics analyzer for noninvasive measurements on conscious animals. In: Zink R (ed) Atmung and Beatmung Biomesstechnik. Sachs, Freiburg, pp 216–226Google Scholar
  62. 62.
    Silbaugh SA, Mauderly JL, MacKenc A (1981) Effects of sulfuric acid and nitrogen dioxide on airway responsiveness of the guinea pig. J Toxicol Environ Health 8: 31–45PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. C. Braga
    • 1
  1. 1.Center for Respiratory Pharmacology, School of MedicineUniversity of MilanMilanoItaly

Personalised recommendations