The Involvement of the Brainstem Reticular Formation in Pain Processing

  • C. Desbois
  • L. Monconduit
  • L. Villanueva
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)


In addition to spinal pathways carrying nociceptive information directly to the diencephalon, some such information is relayed within the caudal brainstem. Indeed, it has been known for a long time that the majority of ascending axons located in the anterolateral quadrant of the spinal white matter, which contains the pain pathways in mammals, terminate within the medullary reticular formation [1–3]. Interestingly, the notion of a receptive centre (centrum receptorium or sensorium)within the reticular formation was introduced by Kohnstamm and Quensel [4] for bulbar reticular areas receiving spinal afferents. In a study of retrograde cellular reactions in the bulbar reticular formation to high mesencephalic lesions, the same authors demonstrated ascending pathways connecting the centrum receptorium with higher levels of the brain. They postulated that reticulo-thalamic projections might be part of a polysynaptic path responsible for the conduction of pain and temperature to higher brain levels [5].


Reticular Formation Pain Processing Noxious Stimulation Nociceptive Input Nociceptive Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mehler WR, Feferman ME, Nauta WJH (1960) Ascending axon degeneration following antero-lateral corodotomy, an experimental study in the monkey. Brain 83: 718–751PubMedCrossRefGoogle Scholar
  2. 2.
    Bowsher D (1957) Termination of the central pain pathway in man: the conscious appreciation of pain. Brain 80: 606–622PubMedCrossRefGoogle Scholar
  3. 3.
    Bowsher D (1962) The topographical projection of fibres from the anterolateral quadrant of the spinal cord to the subdiencephalic brain stem in man. Psychiatr Neurol 143: 75–99CrossRefGoogle Scholar
  4. 4.
    Kohnstamm O, Quensel F (1908) Das centrum receptorium (sensorium) der formatio reticularis. Neurol Zbl 27: 1046–1047Google Scholar
  5. 5.
    Quensel F (1907) Präparate mit aktiven Zelldegenerationen nach Hirnstammverletzung bei Kaninchen. Neurol Zbl 26: 1138–1139Google Scholar
  6. 6.
    Bowsher D (1976) Role of the reticular formation in responses to noxious stimulation. Pain 2: 361–378PubMedCrossRefGoogle Scholar
  7. 7.
    Gebhart GF (1982) Opiate and opioid peptide effects on brain stem neurons: relevance to nociception and antinociceptive mechanisms. Pain 12: 93–140PubMedCrossRefGoogle Scholar
  8. 8.
    Villanueva L, Bouhassira D, Le Bars D (1996) The medullary subnucleus reticularis dorsalis ( SRD) as a key link in both the transmission and modulation of pain signals. Pain 67: 231–240PubMedCrossRefGoogle Scholar
  9. 9.
    Casey KL (1969) Somatosensory responses of bulboreticular units in the awake cat: relation to escape producing stimuli. Science 173: 77–80CrossRefGoogle Scholar
  10. 10.
    Casey KL (1971) Escape elicited by bulboreticular stimulation in the cat. Int J Neurosci 2: 29–34PubMedCrossRefGoogle Scholar
  11. 11.
    Valverde F (1961) Reticular formation of the pons and medulla oblongata. A Golgi study. J Comp Neurol 116: 71–99PubMedCrossRefGoogle Scholar
  12. 12.
    Valverde F (1962) Reticular formation of the albino rat’s brainstem: cytoarchitecture and corticofugal connections. J Comp Neurol 119: 25–49PubMedCrossRefGoogle Scholar
  13. 13.
    Newman DB (1985) Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei. J Hirnforsch 26: 187–226PubMedGoogle Scholar
  14. 14.
    Villanueva L, Bouhassira D, Bing Z, Le Bars D (1988) Convergence of heterotopic nociceptive information onto subnucleus reticularis dorsalis neurons in the rat medulla. J Neurophysiol 60: 980–1009PubMedGoogle Scholar
  15. 15.
    Villanueva L, Bing Z, Le Bars D (1994) Effects of heterotopic noxious stimuli on activity of neurones in Subnucleus Reticularis Dorsalis in the rat medulla. J Physiol (London) 475: 255–266Google Scholar
  16. 16.
    Villanueva L, Bing Z, Bouhassira D, Le Bars D (1989) Encoding of electrical, thermal and mechanical noxious stimuli by subnucleus reticularis dorsalis neurons in the rat medulla. J Neurophysiol 61: 391–402PubMedGoogle Scholar
  17. 17.
    Roy JC, Bing Z, Villanueva L, Le Bars D (1992) Convergence of visceral and somatic inputs onto subnucleus reticularis dorsalis neurones in the rat medulla. J Physiol (London) 452: 235–246Google Scholar
  18. 18.
    Villanueva L, Cliffer KD, Sorkin L et al (1990) Convergence of heterotopic nociceptive information onto neurons of the caudal medullary reticular formation in the monkey ( Macaca fascicularis ). J Neurophysiol 63: 1118–1127PubMedGoogle Scholar
  19. 19.
    Bing Z, Villanueva L, Le Bars D (1990) Ascending pathways in the spinal cord involved in the activation of subnucleus reticularis dorsalis neurons in the medulla of the rat. J Neurophysiol 63: 424–438PubMedGoogle Scholar
  20. 20.
    Villanueva L, Nathan PW (2000) Multiple pain pathways. In: Devor M, Rowbotham, MC, Wiesendfeld-Hallin Z (eds) Proceedings of the Ninth World Congress on Pain. IASP, Seattle, pp 371–386Google Scholar
  21. 21.
    Lima D (1990) A spinomedullary projection terminating in the dorsal reticular nucleus of the rat. Neuroscience 34: 577–590PubMedCrossRefGoogle Scholar
  22. 22.
    Villanueva L, De Pommery J, Menétrey D, Le Bars D (1991) Spinal afferent projections to subnucleus reticularis dorsalis in the rat. Neurosci Lett 134: 98–102PubMedCrossRefGoogle Scholar
  23. 23.
    Yezierski RP, Broton JG (1991) Functional properties of spino-mesencephalic tract ( SMT) cells in the upper cervical spinal cord of the cat. Pain 45: 187–196PubMedCrossRefGoogle Scholar
  24. 24.
    Smith MV, Apkarian AV, Hodge CJ (1991) Somatosensory response properties of contralaterally projecting spinothalamic and non-spinothalamic neurons in the second cervical segment of the cat. J Neurophysiol 66: 83–102PubMedGoogle Scholar
  25. 25.
    Willis WD, Coggeshall RE (1991) Sensory mechanisms of the spinal cord. Plenum, New YorkGoogle Scholar
  26. 26.
    Hitchcock E (1970) Stereotaxic cervical myelotomy. J Neurol Neurosurg Psychiatry 33: 224–230PubMedCrossRefGoogle Scholar
  27. 27.
    Papo I, Luongo A (1976) High cervical commissural myelotomy in the treatment of pain. J Neurol Neurosurg Psychiatry 39: 705–710PubMedCrossRefGoogle Scholar
  28. 28.
    Schvarcz JR (1977) Functional exploration of the spinomedullary junction. Acta Neurochir Suppl (Wien) 24: 179–185CrossRefGoogle Scholar
  29. 29.
    Sourek K (1977) Mediolongitudinal myelotomy. Prog Neurol Surg 8: 15–34Google Scholar
  30. 30.
    Cook AW, Nathan PW, Smith MC (1984) Sensory consequences of commissural myelotomy. A challenge to traditional anatomical concepts. Brain 107: 547–568PubMedCrossRefGoogle Scholar
  31. 31.
    Villanueva L, Bernard JF, Le Bars D (1995) Distribution of spinal cord projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: a phaseolus vulgaris leucoagglutinin ( PHA-L) study in the rat. J Comp Neurol 352: 11–32PubMedCrossRefGoogle Scholar
  32. 32.
    Raboisson P, Dallel R, Bernard JF et al (1996) Organization of efferent projections from the spinal cervical enlargement to the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: a PHA-L study in the rat. J Comp Neurol 367: 503–517PubMedCrossRefGoogle Scholar
  33. 33.
    Almeida A, Tavares I, Lima D, Coimbra A (1993) Descending projections from the medullary dorsal reticular nucleus make synaptic contacts with spinal cord lamina I cells projecting to that nucleus: an electron microscopic tracer study in the rat. Neuroscience 55: 1093–1106PubMedCrossRefGoogle Scholar
  34. 34.
    Almeida A, Tavares I, Lima D (2000) Reciprocal connections between the medullary dorsal reticular nucleus and the spinal dorsal horn in the rat (Submitted )Google Scholar
  35. 35.
    Villanueva L, Le Bars D (1995) The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls ( DNIC ). Biol Res 28: 113–125PubMedGoogle Scholar
  36. 36.
    Bing Z, Villanueva L, Le Bars D (1990) Acupuncture and diffuse noxious inhibitory controls: naloxone reversible depression of activities of trigeminal convergent neurones. Neuroscience 37: 809–818PubMedCrossRefGoogle Scholar
  37. 37.
    Bouhassira D, Villanueva L, Bing Z, Bars D (1992) Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat. Brain Res 595: 353–357PubMedCrossRefGoogle Scholar
  38. 38.
    De Broucker T, Cesaro P, Willer JC, Le Bars D (1990) Diffuse noxious inhibitory controls (DNIC) in man: involvement of a spino-reticular tract. Brain 113: 1223–1234PubMedCrossRefGoogle Scholar
  39. 39.
    Villanueva L, Desbois C, Le Bars D, Bernard JF (1998) Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: a retrograde and anterograde tracer study in the rat. J Comp Neurol 390: 133–160PubMedCrossRefGoogle Scholar
  40. 40.
    Monconduit L, Bourgeais L, Bernard JF et al (1999) Ventromedial thalamic neurons convey nociceptive signals from the whole body surface to the dorsolateral neocortex. J Neurosci 19: 9063–9072PubMedGoogle Scholar
  41. 41.
    Desbois C, Villanueva L (2000) The organization of lateral ventromedial thalamic connections in the rat: a link for the distribution of nociceptive signals to widespread cortical regions (Submitted)Google Scholar
  42. 42.
    Cajal SR (1972) Histologie du Système Nerveux de l’Homme et des Vertébrés [Reprinted from the original (1911)]. Maloine, ParisGoogle Scholar
  43. 43.
    Marin-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21: 64–71PubMedCrossRefGoogle Scholar
  44. 44.
    Morison RS, Dempsey EW (1942) A study of thalamo-cortical relations. Am J Physiol 135: 281–292Google Scholar
  45. 45.
    Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1: 445–473Google Scholar
  46. 46.
    Jasper HH (1961) Thalamic reticular system. In: Sheer DE (ed) Electrical stimulation of the brain. Austin University Press, Austin, pp 277–287Google Scholar
  47. 47.
    Herkenham M (1986) New perspectives on the organization and evolution of nonspecific thalamocortical projections. In: Jones EG, Peters A (eds) Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 403–445 (Cerebral cortex, vol. 5 )Google Scholar
  48. 48.
    Desbois C, Le Bars D, Villanueva L (1999) Organization of cortical projections to the medullary subnucleus reticularis dorsalis: a retrograde and anterograde tracing study in the rat. J Comp Neurol 410: 178–196PubMedCrossRefGoogle Scholar
  49. 49.
    Steriade M, Contreras D, Amzica F (1997) The thalamocortical dialogue during wake, sleep and paroxysmal oscillations. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus. Elsevier, Amsterdam, pp 213–294Google Scholar
  50. 50.
    Porro CA, Cavazzuti M (1996) Functional imaging studies of the pain system in man and animals. In: Carli G, Zimmerman M (eds) Towards the neurobiology of chronic pain. Elsevier, New York, pp 47–62 (Progress in brain research, vol. 110 )Google Scholar
  51. 51.
    Treede RD, Kenshalo DR, Gracely RH, Jones AK (1999) The cortical representation of pain. Pain 79: 105–111PubMedCrossRefGoogle Scholar
  52. 52.
    Derbyshire SW, Jones AK, Gyulai F et al (1997) Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 73: 431–445PubMedCrossRefGoogle Scholar
  53. 53.
    Groenewegen HJ, Berendse HW (1994) The specificity of the nonspecific midline and intralaminar thalamic nuclei. Trends Neurosci 17: 52–57PubMedCrossRefGoogle Scholar
  54. 54.
    Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85: 331–345PubMedCrossRefGoogle Scholar
  55. 55.
    Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2001

Authors and Affiliations

  • C. Desbois
  • L. Monconduit
  • L. Villanueva

There are no affiliations available

Personalised recommendations