Neurochemistry of Pain Circuits: Physiological versus Pathological Pain

  • L. Calzà
Conference paper
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)


In the last 15 years, human and animal studies have indicated that the anatomical, neurochemical and functional correlates of pain states are quite different in symptomatic and pathologic pain [1, 2]. Thus, the biological substrate for pharmacological therapy is different for treating acute, symptomatic pain and different types of pathologic chronic pain. Moreover, the pathophysiology of a long-lasting pain syndrome also changes with the course of a disease.


Nerve Growth Factor Dorsal Root Ganglion Neuropathic Pain Dorsal Horn Dorsal Root Ganglion Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Loeser JD, Melzack R (1999) Pain: an overview. Lancet 353: 1607–1609PubMedCrossRefGoogle Scholar
  2. 2.
    Basbaum AI (1999) Distinct neurochemical features of acute and persistent pain? Proc Natl Acad Sci USA 96: 7739–7743PubMedCrossRefGoogle Scholar
  3. 3.
    Dalsgaard C-J (1988) The sensory system. In: Bjorklund A, Hokfelt T, Owman C (eds) The peripheral nervous system. Handbook of chemical neuroanatomy, vol. 6. Elsevier, Amsterdam, pp 599–636Google Scholar
  4. 4.
    Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci. 20: 19–26PubMedCrossRefGoogle Scholar
  5. 5.
    Matthes HW, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383: 819–23PubMedCrossRefGoogle Scholar
  6. 6.
    Sora I, Takahashi N, Funada M et al (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94: 1544–1549PubMedCrossRefGoogle Scholar
  7. 7.
    Tanner KD, Gold MS, Reichling DB, Levine JD (1997) Transduction and excitability in nociceptors: dynamic phenomena. In: Borsook D (ed) Molecular neurobiology of pain. Progress in pain research and management, vol. 9. IASP Press, Seattle, pp 79–105Google Scholar
  8. 8.
    Besson JM (1999) The neurobiology of pain. Lancet 353: 1610–1615PubMedCrossRefGoogle Scholar
  9. 9.
    Wood JN, Akopian AN, Cesare P et al (2000) The primary nociceptor: special functions, special receptors. In: Devor M, Rowbotham MC, Wiesenfeld-Hallin Z (eds) Proceedings of the 9th World Congress on Pain. Progress in pain research and management. Vol. 16 IASP Press, Seattle, pp 47–62Google Scholar
  10. 10.
    Carlton SM, Coggeshall RE (1998) Nociceptive integration: does it have a peripheral component? Pain Forum 7: 71–78CrossRefGoogle Scholar
  11. 11.
    Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. (rewiew) Pharmacol Rev 51: 159–212Google Scholar
  12. 12.
    Dickenson AH (1995) Spinal cord pharmacology of pain. Br J Anaesth 75: 193–200PubMedGoogle Scholar
  13. 13.
    Dickenson AH, Chapman V (2000) New and old anticonvulsants as analgesics. In: Devor M, Rowbotham MC, Wiesenfeld-Hallin Z (eds) Proceedings of the 9th World Congress on Pain. Progress in pain research and management, vol. 16. IASP Press, Seattle, pp 875–886Google Scholar
  14. 14.
    Calzà L, Pozza M, Zanni M (1999) Neurochemical memory in pain circuits. In: Tiengo M, Paladini VA, Rawal N (eds) Regional anaesthesia analgesia and pain management. Basic guidlines and clinical orientation, Springer Milano, pp 23–31Google Scholar
  15. 15.
    Meller ST, Gebhart GF (1993) Nitric oxide ( NO) and nociceptive processing in the spinal cord. Pain 52: 127–136PubMedCrossRefGoogle Scholar
  16. 16.
    Malmberg AB, Yaksh TL (1993) Spinal nitric oxide synthesis inhibition blocks NMDAinduced thermal hyperlagesia and produce antinociception in the formalin test in rats. Pain 54: 291–300PubMedCrossRefGoogle Scholar
  17. 17.
    Stanfa LC, Misra C, Dickenson AH (1996) Amplification of spinal nociceptive transmission depends on the generation of nitric oxide in normal and carrageenan rats. Brain Res 737: 92–98PubMedCrossRefGoogle Scholar
  18. 18.
    Urban MO, Gebhart GF (1999) Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci USA 96: 7687–7692PubMedCrossRefGoogle Scholar
  19. 19.
    Aimar P, Pasti L, Carmignoto G, Merighi A (1998) Nitric-oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelatinosa. J Neurosci 18: 10375–10388PubMedGoogle Scholar
  20. 20.
    Pozza M, Bettelli C, Magnani F et al (1998) Is neuronal nitric oxide involved in adjuvant-induced joint inflammation? Eur J Pharmacol 359: 87–93PubMedCrossRefGoogle Scholar
  21. 21.
    Hökfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17: 22–30PubMedCrossRefGoogle Scholar
  22. 22.
    Hökfelt T, Zhang X, Xu X-Q et al (1997) Transition of pain from acute to chronic: cellular and synaptic mechanisms. In: Jensen TS, Turner JA, Wiesenfeld-Hallin Z (eds) Proceedings 8th World Congress on Pain. IASP Press, Seattle, pp 133–154Google Scholar
  23. 23.
    Millan MJ (1999) The induction of pain: an integrated review. Prog Neurobiol 57: 1–164PubMedCrossRefGoogle Scholar
  24. 24.
    Cervero F, Laird JM (1996) Mechanisms of touch-evoked pain (allodynia): a new model. Pain 68: 13–23PubMedCrossRefGoogle Scholar
  25. 25.
    Cervero F, Laird JM (1996) From acute to chronic pain: mechanisms and hypotheses. Prog Brain Res 110: 3–15PubMedCrossRefGoogle Scholar
  26. 26.
    Dubner R, Ruda MA (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 15: 96–103PubMedCrossRefGoogle Scholar
  27. 27.
    Uhl GR, Nishimori T (1990) Neuropeptide gene expression regulation and neural activity: assessing a working hypothesis in nucleus caudalis and dorsal horn neurons expressing preproenkephalin and preprodynorphin. Cell Mol Neurobiol 10: 73–98PubMedCrossRefGoogle Scholar
  28. 28.
    Woolf CJ (1996) Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philos Trans R Soc Lond B Biol Sci 351: 441–448PubMedCrossRefGoogle Scholar
  29. 29.
    Doyle CA, Palmer JA, Munglani R, Hunt SP (1997) Molecular consequences of noxious stimulation. In: Borsook D (ed) Molecular neurobiology of pain. Progress in pain research and management, vol. 9. IASP Press, Seattle, pp 145–169Google Scholar
  30. 30.
    Hall SM (1999) The biology of chronically denervated Schwann cells. Ann N Y Acad Sci 883: 215–233PubMedCrossRefGoogle Scholar
  31. 31.
    Baron R, Levine JD, Fields HL (1999) Causalgia and reflex sympathetic dystrophy: does the sympathetic nervous system contribute to the generation of pain? Muscle Nerve 22: 678–695PubMedCrossRefGoogle Scholar
  32. 32.
    Eide PK (1998) Pathophysiological mechanisms of central neuropathic pain after spinal cord injury. Spinal Cord 36: 601–12PubMedCrossRefGoogle Scholar
  33. 33.
    Woolf CJ, Mannion RJ (1999) Neurophatic pain: aetiology symptoms, mechanisms and management. Lancet 353: 1959–1964PubMedCrossRefGoogle Scholar
  34. 34.
    Tong YG, Wang HF, Ju G et al (1999) Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting. J Comp Neurol 404: 143–158PubMedCrossRefGoogle Scholar
  35. 35.
    Calzà L, Pozza M, Arletti R et al (2000) Long-lasting regulation of opiate, galanin and other peptides in dorsal root ganglia and spinal cord during experimental polyarthritis. Exp Neurol 164: 333–343PubMedCrossRefGoogle Scholar
  36. 36.
    Calzà L, Pozza M, Zanni M et al (1998) Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82: 575–589PubMedCrossRefGoogle Scholar
  37. 37.
    Pozza M, Guerra M, Manzini E, Calzà L (2000) A histochemical study of the rheumatoid synovium: focus on nitric oxide, nerve growth factor high affinity receptor and innervation. J Rheumatol 27: 1121–1127PubMedGoogle Scholar
  38. 38.
    Tatemoto K, Rökaeus A, Jörnvall H et al (1983) Galanin–a novel biologically active peptide from porcine intestine: FEBS Lett 164: 124–128PubMedGoogle Scholar
  39. 39.
    Wiesenfeld-Hallin Z, Bartfai T, Hökfelt T (1992) Galanin in sensory neurons in the spinal cord. Front Neuroendocrinol 13: 319–343PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2001

Authors and Affiliations

  • L. Calzà

There are no affiliations available

Personalised recommendations