Skip to main content

Neurochemistry of Pain Circuits: Physiological versus Pathological Pain

  • Conference paper
Neuroscience: Focus on Acute and Chronic Pain

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

  • 196 Accesses

Abstract

In the last 15 years, human and animal studies have indicated that the anatomical, neurochemical and functional correlates of pain states are quite different in symptomatic and pathologic pain [1, 2]. Thus, the biological substrate for pharmacological therapy is different for treating acute, symptomatic pain and different types of pathologic chronic pain. Moreover, the pathophysiology of a long-lasting pain syndrome also changes with the course of a disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loeser JD, Melzack R (1999) Pain: an overview. Lancet 353: 1607–1609

    Article  PubMed  CAS  Google Scholar 

  2. Basbaum AI (1999) Distinct neurochemical features of acute and persistent pain? Proc Natl Acad Sci USA 96: 7739–7743

    Article  PubMed  CAS  Google Scholar 

  3. Dalsgaard C-J (1988) The sensory system. In: Bjorklund A, Hokfelt T, Owman C (eds) The peripheral nervous system. Handbook of chemical neuroanatomy, vol. 6. Elsevier, Amsterdam, pp 599–636

    Google Scholar 

  4. Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci. 20: 19–26

    Article  PubMed  CAS  Google Scholar 

  5. Matthes HW, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383: 819–23

    Article  PubMed  CAS  Google Scholar 

  6. Sora I, Takahashi N, Funada M et al (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94: 1544–1549

    Article  PubMed  CAS  Google Scholar 

  7. Tanner KD, Gold MS, Reichling DB, Levine JD (1997) Transduction and excitability in nociceptors: dynamic phenomena. In: Borsook D (ed) Molecular neurobiology of pain. Progress in pain research and management, vol. 9. IASP Press, Seattle, pp 79–105

    Google Scholar 

  8. Besson JM (1999) The neurobiology of pain. Lancet 353: 1610–1615

    Article  PubMed  CAS  Google Scholar 

  9. Wood JN, Akopian AN, Cesare P et al (2000) The primary nociceptor: special functions, special receptors. In: Devor M, Rowbotham MC, Wiesenfeld-Hallin Z (eds) Proceedings of the 9th World Congress on Pain. Progress in pain research and management. Vol. 16 IASP Press, Seattle, pp 47–62

    Google Scholar 

  10. Carlton SM, Coggeshall RE (1998) Nociceptive integration: does it have a peripheral component? Pain Forum 7: 71–78

    Article  Google Scholar 

  11. Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. (rewiew) Pharmacol Rev 51: 159–212

    CAS  Google Scholar 

  12. Dickenson AH (1995) Spinal cord pharmacology of pain. Br J Anaesth 75: 193–200

    PubMed  CAS  Google Scholar 

  13. Dickenson AH, Chapman V (2000) New and old anticonvulsants as analgesics. In: Devor M, Rowbotham MC, Wiesenfeld-Hallin Z (eds) Proceedings of the 9th World Congress on Pain. Progress in pain research and management, vol. 16. IASP Press, Seattle, pp 875–886

    Google Scholar 

  14. Calzà L, Pozza M, Zanni M (1999) Neurochemical memory in pain circuits. In: Tiengo M, Paladini VA, Rawal N (eds) Regional anaesthesia analgesia and pain management. Basic guidlines and clinical orientation, Springer Milano, pp 23–31

    Google Scholar 

  15. Meller ST, Gebhart GF (1993) Nitric oxide ( NO) and nociceptive processing in the spinal cord. Pain 52: 127–136

    Article  PubMed  CAS  Google Scholar 

  16. Malmberg AB, Yaksh TL (1993) Spinal nitric oxide synthesis inhibition blocks NMDAinduced thermal hyperlagesia and produce antinociception in the formalin test in rats. Pain 54: 291–300

    Article  PubMed  CAS  Google Scholar 

  17. Stanfa LC, Misra C, Dickenson AH (1996) Amplification of spinal nociceptive transmission depends on the generation of nitric oxide in normal and carrageenan rats. Brain Res 737: 92–98

    Article  PubMed  CAS  Google Scholar 

  18. Urban MO, Gebhart GF (1999) Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci USA 96: 7687–7692

    Article  PubMed  CAS  Google Scholar 

  19. Aimar P, Pasti L, Carmignoto G, Merighi A (1998) Nitric-oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelatinosa. J Neurosci 18: 10375–10388

    PubMed  CAS  Google Scholar 

  20. Pozza M, Bettelli C, Magnani F et al (1998) Is neuronal nitric oxide involved in adjuvant-induced joint inflammation? Eur J Pharmacol 359: 87–93

    Article  PubMed  CAS  Google Scholar 

  21. Hökfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17: 22–30

    Article  PubMed  Google Scholar 

  22. Hökfelt T, Zhang X, Xu X-Q et al (1997) Transition of pain from acute to chronic: cellular and synaptic mechanisms. In: Jensen TS, Turner JA, Wiesenfeld-Hallin Z (eds) Proceedings 8th World Congress on Pain. IASP Press, Seattle, pp 133–154

    Google Scholar 

  23. Millan MJ (1999) The induction of pain: an integrated review. Prog Neurobiol 57: 1–164

    Article  PubMed  CAS  Google Scholar 

  24. Cervero F, Laird JM (1996) Mechanisms of touch-evoked pain (allodynia): a new model. Pain 68: 13–23

    Article  PubMed  CAS  Google Scholar 

  25. Cervero F, Laird JM (1996) From acute to chronic pain: mechanisms and hypotheses. Prog Brain Res 110: 3–15

    Article  PubMed  CAS  Google Scholar 

  26. Dubner R, Ruda MA (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 15: 96–103

    Article  PubMed  CAS  Google Scholar 

  27. Uhl GR, Nishimori T (1990) Neuropeptide gene expression regulation and neural activity: assessing a working hypothesis in nucleus caudalis and dorsal horn neurons expressing preproenkephalin and preprodynorphin. Cell Mol Neurobiol 10: 73–98

    Article  PubMed  CAS  Google Scholar 

  28. Woolf CJ (1996) Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philos Trans R Soc Lond B Biol Sci 351: 441–448

    Article  PubMed  CAS  Google Scholar 

  29. Doyle CA, Palmer JA, Munglani R, Hunt SP (1997) Molecular consequences of noxious stimulation. In: Borsook D (ed) Molecular neurobiology of pain. Progress in pain research and management, vol. 9. IASP Press, Seattle, pp 145–169

    Google Scholar 

  30. Hall SM (1999) The biology of chronically denervated Schwann cells. Ann N Y Acad Sci 883: 215–233

    Article  PubMed  CAS  Google Scholar 

  31. Baron R, Levine JD, Fields HL (1999) Causalgia and reflex sympathetic dystrophy: does the sympathetic nervous system contribute to the generation of pain? Muscle Nerve 22: 678–695

    Article  PubMed  CAS  Google Scholar 

  32. Eide PK (1998) Pathophysiological mechanisms of central neuropathic pain after spinal cord injury. Spinal Cord 36: 601–12

    Article  PubMed  CAS  Google Scholar 

  33. Woolf CJ, Mannion RJ (1999) Neurophatic pain: aetiology symptoms, mechanisms and management. Lancet 353: 1959–1964

    Article  PubMed  CAS  Google Scholar 

  34. Tong YG, Wang HF, Ju G et al (1999) Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting. J Comp Neurol 404: 143–158

    Article  PubMed  CAS  Google Scholar 

  35. Calzà L, Pozza M, Arletti R et al (2000) Long-lasting regulation of opiate, galanin and other peptides in dorsal root ganglia and spinal cord during experimental polyarthritis. Exp Neurol 164: 333–343

    Article  PubMed  Google Scholar 

  36. Calzà L, Pozza M, Zanni M et al (1998) Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82: 575–589

    Article  PubMed  Google Scholar 

  37. Pozza M, Guerra M, Manzini E, Calzà L (2000) A histochemical study of the rheumatoid synovium: focus on nitric oxide, nerve growth factor high affinity receptor and innervation. J Rheumatol 27: 1121–1127

    PubMed  CAS  Google Scholar 

  38. Tatemoto K, Rökaeus A, Jörnvall H et al (1983) Galanin–a novel biologically active peptide from porcine intestine: FEBS Lett 164: 124–128

    PubMed  CAS  Google Scholar 

  39. Wiesenfeld-Hallin Z, Bartfai T, Hökfelt T (1992) Galanin in sensory neurons in the spinal cord. Front Neuroendocrinol 13: 319–343

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Calzà, L. (2001). Neurochemistry of Pain Circuits: Physiological versus Pathological Pain. In: Tiengo, M.A. (eds) Neuroscience: Focus on Acute and Chronic Pain. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2258-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2258-4_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0134-3

  • Online ISBN: 978-88-470-2258-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics