Skip to main content

Imaging Tumor Angiogenesis Using Contrast-Enhanced Magnetic Resonance Imaging

  • Conference paper
  • 82 Accesses

Part of the book series: Syllabus ((SYLLABUS))

Abstract

Magnetic resonance imaging (MRI) enhanced with contrast media has the potential to measure the level of angiogenesis in cancers and to monitor the immediate effects of drugs intended to inhibit angiogenesis. To appreciate the significance of such potential, it is necessary to first understand what is angiogenesis and why it is receiving so much attention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J (1989) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6

    Google Scholar 

  2. Liotta LA, Kleinerman J, Saidel GM (1974) Quantitative relationships of intravascular tumor cells, tumor vessels and pulmonary metastases following tumor implantation. Cancer Res 34: 997–1004

    PubMed  CAS  Google Scholar 

  3. Jain R, Gerlowski L (1984) Extravascular transport in normal and tumor tissues. Crit Rev Oncol Hematol 5: 115–170

    Article  Google Scholar 

  4. Fidler 1, Ellis L (1994) The implication of angiogenesis for the biology and therapy of cancer metastases. Cell 79: 185188

    Google Scholar 

  5. Weidner N, Semple J, Welch W, Folkman J (1991) Tumor angiogensis and metasasis: correlation in invasive breast carcinoma. N Engl J Med 324: 1–8

    Article  PubMed  CAS  Google Scholar 

  6. Weidner N (1995) Intratumoral microvascular density as a prognostic factor in cancer. Am J Pathol 147: 9–19

    PubMed  CAS  Google Scholar 

  7. Folkman J (1992) Introduction: angiogenesis and cancer. Semin Cancer Biol 3: 47–48

    Google Scholar 

  8. Heywang-Köbrunner S (1994) Contrast-enhanced magnetic resonance imaging of the breast. Invest Radiol 29: 94–104

    Article  PubMed  Google Scholar 

  9. Aicher KP, Dupon JW, White DL, et al. (1990) Contrast-enhanced magnetic resonance imaging of tumor-bearing mice treated with human recombinant tumor necrosis factor alpha. Cancer Res 50: 7376–7381

    PubMed  CAS  Google Scholar 

  10. van Dijke C, Brasch R, Roberts T, et al. (1996) Mammary carcinoma model: correlation of macromolecular contrast enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198: 813–818

    PubMed  Google Scholar 

  11. Schwickert H, Stiskal M, Roberts T, et al. (1996) Contrast-enhanced MRI assessment of tumor capillary permeability: the effect of pre-irradiation on the tumor delivery of chemotherapy. Radiology 198: 893–898

    PubMed  CAS  Google Scholar 

  12. Cohen F, Kuwatsuru R, Shames D, et al. (1995) Contrast enhanced MRI estimation of altered capillary permeability in experimental mammary carcinomas following irradiation. Invest Radiol 29: 970–977

    Article  Google Scholar 

  13. Daldrup H, Shames D, Wendland M, et al. (1998) Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macro-molecular and small molecular contrast media. Am J Roentgen 171: 941–949

    CAS  Google Scholar 

  14. Schmiedl U, Ogan MD, Paajanen H. et al. (1987) Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology 162: 205–210

    PubMed  CAS  Google Scholar 

  15. Kuwatsuru R, Shames D, Mühler A, et al. (1993) Quantification of tissue plasma volume in the rat by contrast-enhanced magnetic resonance imaging. Magn Reson Med 30: 76–81

    Article  PubMed  CAS  Google Scholar 

  16. Schwickert H, Stiskal M, van Dijke C, et al. (1995) Tumor angiography using high resolution 3D MRI: comparison of Gd-DTPA and a macromolecular blood pool contrast agent. Acad Radiol 2: 851–858

    Article  PubMed  CAS  Google Scholar 

  17. Kaiser W, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Radiology 170: 681–686

    PubMed  CAS  Google Scholar 

  18. Stack JP, Redmond OM, Codd MB, Dervan PA. Ennis JT (1990) Breast disease: tissue characterization with Gd-DTPA enhancement profiles. Radiology 174: 491–494

    Google Scholar 

  19. Buadu L, Murakami J. Murayama S, Hashiguchi N, Masuda K, Toyoshima S (1996) Correlation between contrast-enhanced MR imaging of the breast and tumor angiogenesis: a quantitative and qualitative study. In: Annual Meeting American Roengen Ray Society. San Diego, Abstract 58

    Google Scholar 

  20. Tofts P, Berkowitz B, Schnall M (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33: 564–568

    Article  PubMed  CAS  Google Scholar 

  21. Stomper P. Herman S, Klippenstein D, et al. (1995) Suspect breast lesions: findings at dynamic gadolinium-enhanced MR imaging correlated with mammographic and pathologic features. Radiology 197: 387–395

    PubMed  CAS  Google Scholar 

  22. Weinreb J, Newstead G (1995) MR imaging of the breast. Radiology 196: 593–610

    PubMed  CAS  Google Scholar 

  23. Spraggins T, de Paredes E, DeAngelis G (1993) Three-dimensional keyhole imaging: application to dynamic contrast-enhanced MRI of the breast. Proceedings of the Society of Magnetic Resonance in Medicine. Berkeley, Abstract 115

    Google Scholar 

  24. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197: 1205–1210

    PubMed  CAS  Google Scholar 

  25. Crone C (1963) The permeability of capillaries in various organs determined by the use of the “indicator diffusion” method. Acta Physiol Scand 58: 292–305

    Article  PubMed  CAS  Google Scholar 

  26. Jain R (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6: 559–593

    Article  PubMed  CAS  Google Scholar 

  27. Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31: 288–305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Brasch, R.C. (1999). Imaging Tumor Angiogenesis Using Contrast-Enhanced Magnetic Resonance Imaging. In: Bar-Ziv, J., Horev, G., Kalifa, G. (eds) Highlights of Pediatric Radiology. Syllabus. Springer, Milano. https://doi.org/10.1007/978-88-470-2253-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2253-9_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0061-2

  • Online ISBN: 978-88-470-2253-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics