Modern Imaging in the Follow-up of Brain Tumor Therapy

  • S. Neuenschwander
Conference paper
Part of the Syllabus book series (SYLLABUS)


During the last decade, the management of brain tumor has changed considerably: modern surgical techniques, including computer-assisted resection, permit a greater degree of resection in a larger number of patients, reducing neurological damage [1, 2]. New radiation therapy techniques attempt to escalate the dose of radiation without increasing the risk of radiation-induced toxicity. These techniques include hyperfractionation, three-dimensional conformal treatment planning, interstitial brachytherapy, radiosurgery, fractionated stereotaxic radiotherapy, and proton beam therapy. All these sophisticated therapeutic possibilities imply a precise delineation of the target, with pretreatment planning optimally using 3D, image fusion and simulation.


Positron Emission Tomography Radiation Necrosis Proton Beam Therapy Surveillance Imaging Brain Stem Glioma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nabavi A, Manthei G, Blomer U, Kumpf L, Klinge H, Mehdorn HM (1995) Neuronavigation. Computer-assisted surgery in neurosurgery. Radiology 35: 573–577Google Scholar
  2. 2.
    Zerah M, Druet H. Cinalli G, Brunelle F, Sainte Rose C (1998) Robotique et neurochirurgie 4: 137–144Google Scholar
  3. 3.
    Moghrabi A, Tien R, Fuchs H. Longee D, McLendon R, Friedman HS (1997) False positive images in the follow-up of patients with brain tumors. Med Pediatr Oncol 28: 127–131PubMedCrossRefGoogle Scholar
  4. 4.
    Sjoholm H, Elmqvist D, Rehncrona S, Rosen I, Salford LG (1995) SPECT imaging of gliomas with Thallium-201 and Technetium 99m-HMPAO. Acta Neurol Scand 91: 66–70PubMedGoogle Scholar
  5. 5.
    Lorberboym M, Mandell LR, Mosesson RE, Germano I. et al. (1997) The role of thallium-201 uptake and retention in intracranial tumors after radiotherapy. J Nuclear Med 38: 223–226Google Scholar
  6. 6.
    Sonoda Y, Kumabe T, Takahashi T, Shirane R, Yoshimoto T (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir 38: 342–348CrossRefGoogle Scholar
  7. 7.
    Yoshii Y, Moritake T, Suzuki K, Fujita K, Nose T, Satou M (1996) Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT. AJNR 17: 1773–1776PubMedGoogle Scholar
  8. 8.
    Ricci PE, Karis JP, Heiserman JE, Fram EK, et al. (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR 19: 407–413PubMedGoogle Scholar
  9. 9.
    Olivero WC, Dulebohn SC, Lister JR (1995) The use of PET in evaluating patients with primary brain tumours: is it useful? J Neurol Neurosurg Psychiatry 58: 250–252PubMedCrossRefGoogle Scholar
  10. 10.
    Holthoff VA, Herholz K, Berthold F (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72: 1394–1403PubMedCrossRefGoogle Scholar
  11. 11.
    Herholz K, Hölzer T, Bauer B (1998) ‘C-methionine PET for differential diagnosis of low grade gliomas. Neurology 50: 1316–1322PubMedGoogle Scholar
  12. 12.
    O’Tuama LA, Phillips PC, Strauss LC, Carson BC, Uno Y, et al. (1990) Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr Neurol 6: 163–170PubMedCrossRefGoogle Scholar
  13. 13.
    d’Asseler YM, Koole M, Lemahieu I, Achten E, et al. (1997) Recent and future evolutions in Neuro SPECT with particular emphasis on the synergistic use and fusion of imaging modalities. Acta Neurol Belg 97: 154–162PubMedGoogle Scholar
  14. 14.
    Emri M, Esik O, Repa I, Marian T, Tron L (1997) Image fusion of different tomographic methods (PET/CT/MRI) effectively contribute to therapy planning. Ory Hetil 138: 2919–2924Google Scholar
  15. 15.
    Lev MH, Hochberg F (1998) Perfusion magnetic resonance imaging to assess brain tumor responses to new therapies. Cancer Control 5: 115–123PubMedGoogle Scholar
  16. 16.
    Siegal T, Rubinstein R, Tzuk-Shina T, Gomori JM (1997) Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. J Neurosurg 86: 22–27PubMedCrossRefGoogle Scholar
  17. 17.
    Moore GJ (1998) Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr Radiol 28: 805–814PubMedCrossRefGoogle Scholar
  18. 18.
    Taylor JS, Langston JW, Reddick WE, et al. (1996) Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36: 1251–1261PubMedCrossRefGoogle Scholar
  19. 19.
    Hwang JH, Egnaczyk GF, Ballard E, et al. (1998) Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. AJNR 19: 535–540PubMedGoogle Scholar
  20. 20.
    Spetzger U, Thron A, Gilsbach JM (1998) Immediate postoperative CT contrast enhancement following surgery of cerebral tumoral lesions. J Comput Assist Tomogr 22: 120–125PubMedCrossRefGoogle Scholar
  21. 21.
    Nicoletti GF, Barone F, Passanisi M, Mancuso P, Albanese V (1994) Linear contrast enhancement at the operative site on early post-operative CT after removal of brain tumors. J Neurosurg Sci 38: 131–135PubMedGoogle Scholar
  22. 22.
    Bourne JP, Geyer R, Berger M, Griffin B. Milstein J (1992) The prognostic significance of postoperative residual contrast enhancement on CT scan in pediatric patients with medulloblastoma. J Neurooncol 14: 263–270PubMedCrossRefGoogle Scholar
  23. 23.
    Forsyth PA, Petrov E, Mahallati H, Cairncross JG, Brasher P, et al. (1997) Prospective study of postoperative magnetic resonance imaging in patients with malignant gliomas. J Clin Oncol 15: 2076–2081PubMedGoogle Scholar
  24. 24.
    Meyding-Lamade U, Forsting M, Albert F, Kunze S, Sartor K (1993) Accelerated methaemoglobin formation: potential pitfall in early postoperative MRI. Neuroradiology 35: 178–180PubMedCrossRefGoogle Scholar
  25. 25.
    Elster AD, DiPersio DA (1990) Cranial postoperative site: assessment with contrast-enhanced MR imaging. Radiology 174: 93–98PubMedGoogle Scholar
  26. 26.
    Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34: 45–61PubMedCrossRefGoogle Scholar
  27. 27.
    Watling CJ, Lee DH, Macdonald DR, et al. (1994) Corticosteroid-induced magnetic resonance imaging changes in patients with recurrent malignant glioma. J Clin Oncol 12: 1886–1889PubMedGoogle Scholar
  28. 28.
    Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC Jr (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28: 17–31PubMedCrossRefGoogle Scholar
  29. 29.
    Tracqui P, Leitner F, Esteve (1995) Caractérisation dynamique de la croissance des tumeurs cérébrales à partir de séquences d’images obtenues par résonance magnétique nucléaire. Bull Cancer 82 (Suppl 5): 530–535Google Scholar
  30. 30.
    Meyers SP, Wildenhain S, Chess MA, Tarr RW (1994) Postoperative evaluation for intracranial recurrence of medulloblastoma: MR findings with gadopentetate dimeglumine. AJNR 15: 1425–1434PubMedGoogle Scholar
  31. 31.
    Molenkamp G, Riemann B, Kuwert T, Strater R, Kurlemann G. Schober O, Jurgens H, Wolff JE (1998) Monitoring tumor activity in low grade glioma of childhood. Klin Padiatr 210: 239–242PubMedCrossRefGoogle Scholar
  32. 32.
    Barkadjiev AI, Barnes PD, Goumnerova LC, et al. (1996) Magnetic resonance imaging changes after stereotactic radiation therapy for childhood low grade astrocytoma. Cancer 78: 864–873CrossRefGoogle Scholar
  33. 33.
    Moringlane JR, Voges M, Huber G, et al. (1997) Short-term CT and MR changes in brain tumors following 125-I Interstitial irradiation. JCAT 21: 15–21Google Scholar
  34. 34.
    Van Tassel P, Bruner J, Moar MH, et al. (1995) MR of toxic effects of accelerated fractionation radiation therapy and carboplatin chemotherapy for malignant gliomas. AJNR 16: 715–726PubMedGoogle Scholar
  35. 35.
    Boyd C, Ashdown BC, Boyko O, Uglietta JP, et al. (1993) Postradiation cerebellar necrosis mimicking tumor: MR appearance. J Comput Assist Tomogr 17: 124–126CrossRefGoogle Scholar
  36. 36.
    Torres CF, Rebsamen S, Silber JH, Sutton LN, Bilaniuk LT, Zimmerman RA, Goldwein JW. Phillips PC. Lange BJ (1994) Surveillance scanning of children with medulloblastoma. N Engl J Med 330: 892–895PubMedCrossRefGoogle Scholar
  37. 37.
    Mendel E, Levy ML, Raffel C, McComb JG, Pikus H, Nelson MD Jr, Ganz W (1996) Surveillance imaging in children with primitive neuroectodermal tumors. Neurosurgery 38: 692–695PubMedCrossRefGoogle Scholar
  38. 38.
    Lindsley KL (1994) Surveillance scanning of children with medulloblastoma. N Engl J Med 331: 483PubMedGoogle Scholar
  39. 39.
    Friedman HS (1995) More on surveillance scanning of children with medulloblastoma. N Engl J Med 332: 191PubMedCrossRefGoogle Scholar
  40. 40.
    Steinbok P, Hentschel S, Cochrane DD, Kestle JR (1996) Value of postoperative surveillance imaging in the management of children with some common brain tumors. J Neurosurg 84: 726–732PubMedCrossRefGoogle Scholar
  41. 41.
    Sutton LN, Cnaan A, Klatt L, Zhao H, Zimmerman R, et al. (1996) Postoperative surveillance imaging in children with cerebellar astrocytomas. J Neurosurg 84: 721–725PubMedCrossRefGoogle Scholar
  42. 42.
    La Marca F, Tomita T (1997) Importance of patient evaluation for long-term survival in medulloblastoma recurrence. Childs Nery Syst 13: 30–34CrossRefGoogle Scholar
  43. 43.
    Bouffet E, Doz F, Demaille MC, et al. (1998) Improving survival in recurrent medulloblastoma: earlier detection, better treatment or still an impasse? Br J Cancer 77: 1321–1326PubMedCrossRefGoogle Scholar
  44. 44.
    Fischbein NJ, Prados MD, Wara W, Russo C, et al. (1996) Radiologic classification of brain stem tumors: correlation of magnetic resonance imaging appearance with clinical outcome. Pediatr Neurosurg 24: 9–23PubMedCrossRefGoogle Scholar
  45. 45.
    Smith RR, Zimmerman RA, Packer RJ, Hackney DB, et al. (1990) Pediatric brainstem glioma. Post-radiation clinical and MR follow-up. Neuroradiology 32: 265–271PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • S. Neuenschwander
    • 1
  1. 1.Department of Radiology and Nuclear MedicineInstitut CurieParisFrance

Personalised recommendations