Skip to main content

Modern Imaging in the Follow-up of Brain Tumor Therapy

  • Conference paper
  • 81 Accesses

Part of the book series: Syllabus ((SYLLABUS))

Abstract

During the last decade, the management of brain tumor has changed considerably: modern surgical techniques, including computer-assisted resection, permit a greater degree of resection in a larger number of patients, reducing neurological damage [1, 2]. New radiation therapy techniques attempt to escalate the dose of radiation without increasing the risk of radiation-induced toxicity. These techniques include hyperfractionation, three-dimensional conformal treatment planning, interstitial brachytherapy, radiosurgery, fractionated stereotaxic radiotherapy, and proton beam therapy. All these sophisticated therapeutic possibilities imply a precise delineation of the target, with pretreatment planning optimally using 3D, image fusion and simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nabavi A, Manthei G, Blomer U, Kumpf L, Klinge H, Mehdorn HM (1995) Neuronavigation. Computer-assisted surgery in neurosurgery. Radiology 35: 573–577

    Google Scholar 

  2. Zerah M, Druet H. Cinalli G, Brunelle F, Sainte Rose C (1998) Robotique et neurochirurgie 4: 137–144

    Google Scholar 

  3. Moghrabi A, Tien R, Fuchs H. Longee D, McLendon R, Friedman HS (1997) False positive images in the follow-up of patients with brain tumors. Med Pediatr Oncol 28: 127–131

    Article  PubMed  CAS  Google Scholar 

  4. Sjoholm H, Elmqvist D, Rehncrona S, Rosen I, Salford LG (1995) SPECT imaging of gliomas with Thallium-201 and Technetium 99m-HMPAO. Acta Neurol Scand 91: 66–70

    PubMed  CAS  Google Scholar 

  5. Lorberboym M, Mandell LR, Mosesson RE, Germano I. et al. (1997) The role of thallium-201 uptake and retention in intracranial tumors after radiotherapy. J Nuclear Med 38: 223–226

    CAS  Google Scholar 

  6. Sonoda Y, Kumabe T, Takahashi T, Shirane R, Yoshimoto T (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir 38: 342–348

    Article  CAS  Google Scholar 

  7. Yoshii Y, Moritake T, Suzuki K, Fujita K, Nose T, Satou M (1996) Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT. AJNR 17: 1773–1776

    PubMed  CAS  Google Scholar 

  8. Ricci PE, Karis JP, Heiserman JE, Fram EK, et al. (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR 19: 407–413

    PubMed  CAS  Google Scholar 

  9. Olivero WC, Dulebohn SC, Lister JR (1995) The use of PET in evaluating patients with primary brain tumours: is it useful? J Neurol Neurosurg Psychiatry 58: 250–252

    Article  PubMed  CAS  Google Scholar 

  10. Holthoff VA, Herholz K, Berthold F (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72: 1394–1403

    Article  PubMed  CAS  Google Scholar 

  11. Herholz K, Hölzer T, Bauer B (1998) ‘C-methionine PET for differential diagnosis of low grade gliomas. Neurology 50: 1316–1322

    PubMed  CAS  Google Scholar 

  12. O’Tuama LA, Phillips PC, Strauss LC, Carson BC, Uno Y, et al. (1990) Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr Neurol 6: 163–170

    Article  PubMed  Google Scholar 

  13. d’Asseler YM, Koole M, Lemahieu I, Achten E, et al. (1997) Recent and future evolutions in Neuro SPECT with particular emphasis on the synergistic use and fusion of imaging modalities. Acta Neurol Belg 97: 154–162

    PubMed  Google Scholar 

  14. Emri M, Esik O, Repa I, Marian T, Tron L (1997) Image fusion of different tomographic methods (PET/CT/MRI) effectively contribute to therapy planning. Ory Hetil 138: 2919–2924

    CAS  Google Scholar 

  15. Lev MH, Hochberg F (1998) Perfusion magnetic resonance imaging to assess brain tumor responses to new therapies. Cancer Control 5: 115–123

    PubMed  Google Scholar 

  16. Siegal T, Rubinstein R, Tzuk-Shina T, Gomori JM (1997) Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. J Neurosurg 86: 22–27

    Article  PubMed  CAS  Google Scholar 

  17. Moore GJ (1998) Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr Radiol 28: 805–814

    Article  PubMed  CAS  Google Scholar 

  18. Taylor JS, Langston JW, Reddick WE, et al. (1996) Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36: 1251–1261

    Article  PubMed  CAS  Google Scholar 

  19. Hwang JH, Egnaczyk GF, Ballard E, et al. (1998) Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. AJNR 19: 535–540

    PubMed  CAS  Google Scholar 

  20. Spetzger U, Thron A, Gilsbach JM (1998) Immediate postoperative CT contrast enhancement following surgery of cerebral tumoral lesions. J Comput Assist Tomogr 22: 120–125

    Article  PubMed  CAS  Google Scholar 

  21. Nicoletti GF, Barone F, Passanisi M, Mancuso P, Albanese V (1994) Linear contrast enhancement at the operative site on early post-operative CT after removal of brain tumors. J Neurosurg Sci 38: 131–135

    PubMed  CAS  Google Scholar 

  22. Bourne JP, Geyer R, Berger M, Griffin B. Milstein J (1992) The prognostic significance of postoperative residual contrast enhancement on CT scan in pediatric patients with medulloblastoma. J Neurooncol 14: 263–270

    Article  PubMed  CAS  Google Scholar 

  23. Forsyth PA, Petrov E, Mahallati H, Cairncross JG, Brasher P, et al. (1997) Prospective study of postoperative magnetic resonance imaging in patients with malignant gliomas. J Clin Oncol 15: 2076–2081

    PubMed  CAS  Google Scholar 

  24. Meyding-Lamade U, Forsting M, Albert F, Kunze S, Sartor K (1993) Accelerated methaemoglobin formation: potential pitfall in early postoperative MRI. Neuroradiology 35: 178–180

    Article  PubMed  CAS  Google Scholar 

  25. Elster AD, DiPersio DA (1990) Cranial postoperative site: assessment with contrast-enhanced MR imaging. Radiology 174: 93–98

    PubMed  CAS  Google Scholar 

  26. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34: 45–61

    Article  PubMed  CAS  Google Scholar 

  27. Watling CJ, Lee DH, Macdonald DR, et al. (1994) Corticosteroid-induced magnetic resonance imaging changes in patients with recurrent malignant glioma. J Clin Oncol 12: 1886–1889

    PubMed  CAS  Google Scholar 

  28. Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC Jr (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28: 17–31

    Article  PubMed  CAS  Google Scholar 

  29. Tracqui P, Leitner F, Esteve (1995) Caractérisation dynamique de la croissance des tumeurs cérébrales à partir de séquences d’images obtenues par résonance magnétique nucléaire. Bull Cancer 82 (Suppl 5): 530–535

    Google Scholar 

  30. Meyers SP, Wildenhain S, Chess MA, Tarr RW (1994) Postoperative evaluation for intracranial recurrence of medulloblastoma: MR findings with gadopentetate dimeglumine. AJNR 15: 1425–1434

    PubMed  CAS  Google Scholar 

  31. Molenkamp G, Riemann B, Kuwert T, Strater R, Kurlemann G. Schober O, Jurgens H, Wolff JE (1998) Monitoring tumor activity in low grade glioma of childhood. Klin Padiatr 210: 239–242

    Article  PubMed  CAS  Google Scholar 

  32. Barkadjiev AI, Barnes PD, Goumnerova LC, et al. (1996) Magnetic resonance imaging changes after stereotactic radiation therapy for childhood low grade astrocytoma. Cancer 78: 864–873

    Article  Google Scholar 

  33. Moringlane JR, Voges M, Huber G, et al. (1997) Short-term CT and MR changes in brain tumors following 125-I Interstitial irradiation. JCAT 21: 15–21

    CAS  Google Scholar 

  34. Van Tassel P, Bruner J, Moar MH, et al. (1995) MR of toxic effects of accelerated fractionation radiation therapy and carboplatin chemotherapy for malignant gliomas. AJNR 16: 715–726

    PubMed  Google Scholar 

  35. Boyd C, Ashdown BC, Boyko O, Uglietta JP, et al. (1993) Postradiation cerebellar necrosis mimicking tumor: MR appearance. J Comput Assist Tomogr 17: 124–126

    Article  Google Scholar 

  36. Torres CF, Rebsamen S, Silber JH, Sutton LN, Bilaniuk LT, Zimmerman RA, Goldwein JW. Phillips PC. Lange BJ (1994) Surveillance scanning of children with medulloblastoma. N Engl J Med 330: 892–895

    Article  PubMed  CAS  Google Scholar 

  37. Mendel E, Levy ML, Raffel C, McComb JG, Pikus H, Nelson MD Jr, Ganz W (1996) Surveillance imaging in children with primitive neuroectodermal tumors. Neurosurgery 38: 692–695

    Article  PubMed  CAS  Google Scholar 

  38. Lindsley KL (1994) Surveillance scanning of children with medulloblastoma. N Engl J Med 331: 483

    PubMed  CAS  Google Scholar 

  39. Friedman HS (1995) More on surveillance scanning of children with medulloblastoma. N Engl J Med 332: 191

    Article  PubMed  CAS  Google Scholar 

  40. Steinbok P, Hentschel S, Cochrane DD, Kestle JR (1996) Value of postoperative surveillance imaging in the management of children with some common brain tumors. J Neurosurg 84: 726–732

    Article  PubMed  CAS  Google Scholar 

  41. Sutton LN, Cnaan A, Klatt L, Zhao H, Zimmerman R, et al. (1996) Postoperative surveillance imaging in children with cerebellar astrocytomas. J Neurosurg 84: 721–725

    Article  PubMed  CAS  Google Scholar 

  42. La Marca F, Tomita T (1997) Importance of patient evaluation for long-term survival in medulloblastoma recurrence. Childs Nery Syst 13: 30–34

    Article  Google Scholar 

  43. Bouffet E, Doz F, Demaille MC, et al. (1998) Improving survival in recurrent medulloblastoma: earlier detection, better treatment or still an impasse? Br J Cancer 77: 1321–1326

    Article  PubMed  CAS  Google Scholar 

  44. Fischbein NJ, Prados MD, Wara W, Russo C, et al. (1996) Radiologic classification of brain stem tumors: correlation of magnetic resonance imaging appearance with clinical outcome. Pediatr Neurosurg 24: 9–23

    Article  PubMed  CAS  Google Scholar 

  45. Smith RR, Zimmerman RA, Packer RJ, Hackney DB, et al. (1990) Pediatric brainstem glioma. Post-radiation clinical and MR follow-up. Neuroradiology 32: 265–271

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Neuenschwander, S. (1999). Modern Imaging in the Follow-up of Brain Tumor Therapy. In: Bar-Ziv, J., Horev, G., Kalifa, G. (eds) Highlights of Pediatric Radiology. Syllabus. Springer, Milano. https://doi.org/10.1007/978-88-470-2253-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2253-9_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0061-2

  • Online ISBN: 978-88-470-2253-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics