Skip to main content

General Characteristics of Density-Turbidity Currents in the Ross Sea (Antarctica)

  • Conference paper
  • 203 Accesses

Abstract

To investigate thermodynamic currents in Antarctica, we here discuss quasi-steady density currents flowing over a regular slope and their hydrodynamic stability, considering also bottom erosion phenomena: in other words, the current is assumed to exchange sediments with the bottom. To simplify this complex problem a model of sediment evolution is assumed. As in recent work the excess mass due to the bottom erosion and deposition is assumed to depend only on the current stress on the bottom. A nonlinear equation considering both the time and space variability of these “density-turbidity” currents for a two-layer model is obtained and a novel criterion to identify the “ignition” point of these density-turbidity currents is discussed. In Polar Oceans these interactions can play a fundamental role in the generation of new water masses, as a result of violent hydrodynamic instability concerning the downslope motion of dense shelf water along submarine canyons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavalieri DJ, Martin S (1994) The contributions of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J Geophys Res 99 (18): 343–362

    Google Scholar 

  2. Caserta A, Mieli E, Salusti E (1990) On a model of bottom erosion by dense water steady veins. Geophys Astrophys Fluid Dyn 55: 117–135

    Article  Google Scholar 

  3. Salusti E (1996) A new model for marine density-turbidity currents with criteria for ignition. Geophys Astrophys Fluid Dyn 83: 233–260

    Article  Google Scholar 

  4. Nansen F (1906) Northern waters: Captain Roald Amundsen’s oceanographic observations in the Arctic Seas in 1901. Skr Nor Vidensk Akad Kl 1 Mat Naturvidensk K1 3: 145

    Google Scholar 

  5. Gardner WD (1989) Periodic resupension in Baltimore canyon by focusing of internal waves. J Geophys Res 94, C12: 18185–18194

    Article  Google Scholar 

  6. Bignami F, Salusti E, Schiarini S (1990) Observations on a bottom vein of dense water in the Southern Adriatic and Jonian Seas. J Geophys Res 95: 7249–7259

    Article  Google Scholar 

  7. Chapman DC, Gawarkiewicz G (1995) Offshore transport of dense shelf water in the presence of a submarine canyon. J Geophys Res 100, C7: 13373–13387

    Article  Google Scholar 

  8. Jiang L, Garwood RW Jr (1996) Three-dimensional simulations of overflows on continental slopes J Phys Ocean 26: 1214–1233

    Article  Google Scholar 

  9. Sugimoto T, Whitehead JA (1983) Laboratory models for bay-type continental shelves in the winter. J Phys Ocean 13, 1819–1828

    Article  Google Scholar 

  10. Quadfasel D, Rudels B, Kurz K (1988) Outflow of dense water from a Svalbard fjord into the Fram strait. Deep Sea Res 35: 1143–1150

    Article  Google Scholar 

  11. Garrison GR, Becker P (1976) The Barrow submarine canyon: a drain for the Chukchi sea. J Geophys Res 81: 4445–4453

    Article  Google Scholar 

  12. Ellison TH, Turner JS (1959) Turbulent entrainment in stratified flows. J Fluid Mech 6: 432–448

    Article  Google Scholar 

  13. Simpson JE (1982) Gravity currents in the laboratory. Atmos Ocean Anny Rev Fluid Mech 14: 213–234

    Article  Google Scholar 

  14. Simpson JE (1982) Gravity currents in the laboratory. Atmos Ocean Anny Rev Fluid Mech 14: 213–234

    Article  Google Scholar 

  15. Drake DE, Cacchione DA (1986) Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California. Cont Shelf Res 6: 415–429

    Article  Google Scholar 

  16. Parker G, Fukushima Y, Pantin HM (1986) Self accelerating turbidity currents. J Fluid Mech 171: 145–181

    Article  Google Scholar 

  17. Stacey MW, Bowen JA (1988a) The vertical structure of density and turbidity currents: theory and observation. J Geophys Res 93: 3528–3542

    Article  Google Scholar 

  18. Stacey MW, Bowen JA (1988b) The vertical structure of turbidity currents and a necessary condition for self-maintenance. J Geophys Res 93: 3543–3553

    Article  Google Scholar 

  19. Seymour R (1986) Near shore autosuspending turbidity flows. Ocean Eng 13, 5: 435–447

    Article  Google Scholar 

  20. Bagnold RA (1977) Mechanism of marine sedimentation. The Sea. Wiley, Interscience, New York, vol 3, 507–528

    Google Scholar 

  21. Plapp JE, Mitchell JP (1960) A hydrodynamic theory of turbidity currents. J Geophys Res 65: 983–992

    Article  Google Scholar 

  22. Yih CS (1963) Stability of liquid flow down an inclined plane. Phys Fluid 6: 321–334

    Article  Google Scholar 

  23. Jacobs SS, Comiso JC (1989) Sea ice and oceanic processes on the Ross Sea continental shelf. J Geophys Res 94, C12: 18195–18211

    Article  Google Scholar 

  24. Jacobs S, Giulivi CF (1998) Thermohaline data and ocean circulation on the Ross Sea continental shelf (This Volume)

    Google Scholar 

  25. Gouretski V (1998) The large-scale thermohaline structure of the Ross Sea (This Volume)

    Google Scholar 

  26. Whitham GB (1974) Linear and nonlinear waves Wiley, New York, pp 636

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Gremes Cordero, S., Salusti, E. (1999). General Characteristics of Density-Turbidity Currents in the Ross Sea (Antarctica). In: Spezie, G., Manzella, G.M.R. (eds) Oceanography of the Ross Sea Antarctica . Springer, Milano. https://doi.org/10.1007/978-88-470-2250-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2250-8_15

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2252-2

  • Online ISBN: 978-88-470-2250-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics