Advertisement

Intragastric pH(ipH) and PaCO2 Monitoring in Sepsis

  • D. De Backer
  • J. Creteur
  • E. Silva
Conference paper

Abstract

For many years, haemodynamic management of patients with septic shock had consisted in restoring and maintaining global parameters of oxygenation such as oxygen delivery(DO2), consumption(VO2), and extraction(O2ER). However, some patients may still have splanchnic ischaemia [1] and global parameters do not provide reliable information on the adequacy of splanchnic oxygenation. Two factors could account for the development of splanchnic ischaemia. First, in the presence of reduced blood flow, the splanchnic region may be at higher risk of ischaemia than the other parts of the body. When cardiac output decreases, adaptative mechanisms favour the blood flow redistribution to the brain and heart, so that the splanchnic blood flow may be the first to decrease and the last to recover during resuscitation. Furthermore, the critical DO2 is higher in the gut than for the whole body so that this area may be more sensitive to reductions in blood flow. Second, the gut mucosa is particularly sensitive to alterations in regional blood flow because of a decrease in PO2 due to the countercurrent mechanism and a decrease in hematocrit due to plasma skimming. Gut ischaemia may have clinical implications as it has been implicated in the pathogenesis of multiple organ failure [2, 3]. Hence, it has been recently proposed that improvement of regional haemodynamics, or at least avoidance of splanchnic ischaemia, should be included in our resuscitation goals.

Keywords

Septic Shock Septic Patient Mucosal Blood Flow Splanchnic Blood Flow Adrenergic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Temmesfeld-Wollbrück B, Szalay A, Mayer K et al (1998) Abnormalities of gastric mucosal oxygenation in septic shock. Am J Respir Crit Care Med 157:1586–1592PubMedGoogle Scholar
  2. 2.
    Landow L, Andersen LW (1994) Splanchnic ischaemia and its role in multiple organ failure. Acta Anaesthesiol Scand 38:626–639PubMedCrossRefGoogle Scholar
  3. 3.
    Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of post-operative organ dysfunction. Intensive Care Med 20:203–209PubMedCrossRefGoogle Scholar
  4. 4.
    Fiddian-Green R, Pittenger G, Whitehouse WM (1982) Back-diffusion of CO2 and its influence on the intramural pH in gastric intestines of rats. J Surg Res 33:39–48PubMedCrossRefGoogle Scholar
  5. 5.
    Creteur J, De Backer D, Vincent JL (1997) Gas tonometry: in vitro and in vivo validation studies. Anesthesiology 87:504–510PubMedCrossRefGoogle Scholar
  6. 6.
    Wollert S, Antonsson J, Gerdin B et al (1995) Intestinal mucosal injury during porcine faecal peritonitis. Eur J Surg 161:741–750PubMedGoogle Scholar
  7. 7.
    Fink MP, Kaups KL, Wang H, Rothschild HR (1991) Maintenance of superior mesenteric arterial perfusion prevents increased intestinal mucosal permeability in endotoxic pigs. Surgery 110:154–161PubMedGoogle Scholar
  8. 8.
    Nevière R, Chagnon JL, Vallet B et al (1997) Dobutamine improves gastrointestinal mucosal blood flow in a porcine model of endotoxic shock. Crit Care Med 25:1371–1377PubMedCrossRefGoogle Scholar
  9. 9.
    Drazenovic R, Samsel RW, Wylam ME et al (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72:259–265PubMedCrossRefGoogle Scholar
  10. 10.
    Vallet B, Lund N, Curtis SE et al (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76:793–800PubMedGoogle Scholar
  11. 11.
    De Backer D, Zhang H, Manikis P, Vincent JL (1996) Regional effects of dobutamine in endotoxic shock. J Surg Res 65:93–100PubMedCrossRefGoogle Scholar
  12. 12.
    Desai VS, Weil MH, Tang W et al (1993) Gastric intramural PCO2 during peritonitis and shock. Chest 104:1254–1258PubMedCrossRefGoogle Scholar
  13. 13.
    Ljungdahl M, Rasmussen I, Raab Y et al (1997) Small intestinal mucosal pH and lactate production during experimental ischemia-reperfusion and fecal peritonitis in pigs. Shock 7: 131–138PubMedCrossRefGoogle Scholar
  14. 14.
    Maynard N, Bihari D, Beale R et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210PubMedCrossRefGoogle Scholar
  15. 15.
    Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23:1184–1193PubMedCrossRefGoogle Scholar
  16. 16.
    Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199PubMedCrossRefGoogle Scholar
  17. 17.
    Ivatury RR, Simon RJ, Islam S et al (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport oxygen indices versus organ-specific gastric mucosal pH. J Am Coll Surg 183:145–154PubMedGoogle Scholar
  18. 18.
    Meier-Hellmann A, Hannemann L, Schaffartzik W et al (1994) The relevance of measuring O2 supply and O2 consumption for assessment of regional tissue oxygenation. In: P Vaupel (ed) Oxygen transport to the tissues XV. Plenum Press, New York, pp 741–746CrossRefGoogle Scholar
  19. 19.
    Silva E, De Backer D, Creteur J, Vincent JL (1998) Effect of fluid challenge on arterial-gastric CO2 gradient in septic patients. Crit Care Med 26:A38(abstract)CrossRefGoogle Scholar
  20. 20.
    Silverman H, Tuma P (1992) Gastric tonometry in patients with sepsis: Effects of dobutamine infusions and packed red blood cell transfusions. Chest 102:184–188PubMedCrossRefGoogle Scholar
  21. 21.
    Marik PE, Sibbald WJ (1993) Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269:3024–3029PubMedCrossRefGoogle Scholar
  22. 22.
    Reah G, Bodenham AR, Mallick A et al (1997) Initial evaluation of diaspirin cross-linked hemoglobin(DCLHbTM) as a vasopressor in critically ill patients. Crit Care Med 25:1480–1488PubMedCrossRefGoogle Scholar
  23. 23.
    Kvietys PR, Granger DN (1982) Vasoactive agents and splanchnic oxygen uptake. Am J Physiol 243:G1–1G9Google Scholar
  24. 24.
    Schmidt H, Secchi A, Wellmann R et al (1996) Effect of low-dose dopamine on intestinal villus microcirculation during normotensive endotoxemia in rats. Br J Anaesth 76:707–712PubMedGoogle Scholar
  25. 25.
    Germann R, Haisjackl M, Schwarz B et al (1997) Inotropic treatment and intestinal mucosal tissue oxygenation in a model of porcine endotoxemia. Crit Care Med 25:1191–1197PubMedCrossRefGoogle Scholar
  26. 26.
    Nevière R, Mathieu D, Chagnon JL et al (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154: 1684–1688PubMedGoogle Scholar
  27. 27.
    Maynard ND, Bihari DJ, Dalton RN et al (1995) Increasing splanchnic blood flow in the critically ill. Chest 108:1648–1654PubMedCrossRefGoogle Scholar
  28. 28.
    Meier-Hellmann A, Bredle DL, Specht M et al (1997) The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients with septic shock. Intensive Care Med 23:31–37PubMedCrossRefGoogle Scholar
  29. 29.
    Olson D, Pohlman A, Hall JB (1996) Administration of low-dose dopamine to nonoliguric patients with sepsis syndrome does not raise intramucosal gastric pH nor improve creatinine clearance. Am J Respir Crit Care Med 154:1664–1670PubMedGoogle Scholar
  30. 30.
    Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272:1354–1357PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt H, Secchi A, Wellmann R et al (1996) Dopexamine maintains intestinal villus blood flow during endotoxemia in rats. Crit Care Med 24:1233–1237PubMedCrossRefGoogle Scholar
  32. 32.
    Smithies M, Yee TH, Jackson L et al (1994) Protecting the gut and the liver in the critically ill: effects of dopexamine. Crit Care Med 22:789–795PubMedCrossRefGoogle Scholar
  33. 33.
    Reinelt H, Radermacher P, Fischer G et al (1997) Dobutamine and dopexamine and the splanchnic metabolic response in septic shock. Clin Intens Care 8:38–41CrossRefGoogle Scholar
  34. 34.
    Trinder TJ, Lavery GG, Fee JPH, Lowry KG (1995) Correction of splanchnic oxygen deficit in the intensive care unit: dopexamine and colloid versus placebo. Anaesth Intensive Care 23:178–182PubMedGoogle Scholar
  35. 35.
    Gutierrez G, Clark C, Brown SD et al (1994) Effects of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150:324–329PubMedGoogle Scholar
  36. 36.
    Levy B, Bollaert PE, Charpentier C et al (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med 23:282–287PubMedCrossRefGoogle Scholar
  37. 37.
    Esen F, Telci L, Cakar N et al (1996) Evaluation of gastric intramucosal pH measurements with tissue oxygenation indices in patients with severe sepsis. Clin Intens Care 7:180–189CrossRefGoogle Scholar
  38. 38.
    Levy B, Bollaert PE, Lucchelli JP et al (1997) Dobutamine improves the adequacy of gastric mucosal perfusion in epinephrine-treated septic shock. Crit Care Med 25:1649–1654PubMedCrossRefGoogle Scholar
  39. 39.
    Radermacher P, Buhl R, Santak B et al (1995) The effects of prostacyclin on gastric intramucosal pH in patients with septic shock. Intensive Care Med 21:414–421PubMedCrossRefGoogle Scholar
  40. 40.
    Meier-Hellmann A, Specht M, Hannemann L et al (1996) Splanchnic blood flow is greater in septic shock treated with norepinephrine than in severe sepsis. Intensive Care Med 22: 1354–1359PubMedCrossRefGoogle Scholar
  41. 41.
    Meier-Hellmann A, Reinhart K, Bredle DL et al (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25:399–404PubMedCrossRefGoogle Scholar
  42. 42.
    Starlinger M, Jakesz R, Matthews JB et al (1981) The relative importance of HCO3_ and blood flow in the protection of rat gastric mucosa during shock. Gastroenterology 81:732–735PubMedGoogle Scholar
  43. 43.
    Salzman AL, Menconi MJ, Unno N et al (1995) Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BB intestinal epithelial monolayers. Am J Physiol 268: G361–G373PubMedGoogle Scholar
  44. 44.
    Boughton-Smith NK, Hucheson IR, Deaking AM et al (1990) Protective effect of S-nitroso-N-acetyl-penicillamine in endotoxin-induced acute intestinal damage in the rat. Eur J Pharmacol 191:485–488PubMedCrossRefGoogle Scholar
  45. 45.
    Offner PJ, Robertson FM, Pruitt BA (1995) Effects of nitric oxide synthase inhibition on regional blood flow in a porcine model of endotoxic shock. J Trauma 39:338–343PubMedCrossRefGoogle Scholar
  46. 46.
    Braga M, Gianotti L, Cestari A et al (1996) Gut function and immune and inflammatory responses in patients perioperatively fed with supplemented enteral formulas. Arch Surg 131: 1257–1265PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • D. De Backer
  • J. Creteur
  • E. Silva

There are no affiliations available

Personalised recommendations