Advertisement

Is Splanchnic Perfusion a Critical Problem in Sepsis?

  • M. Poeze
  • J. W. M. Greve
  • G. Ramsay
Conference paper

Abstract

For years variations in splanchnic perfusion have been known to occur in critically ill patients, since they have an important role in the control of systemic blood pressure and volume. In patients with an acute hypovolaemia, due to haemorrhage, maintaining an adequate perfusion through the splanchnic system is considered secondary to maintaining perfusion through vital organs [1]. In previous decades little attention, therefore, was paid to maintaining an adequate splanchnic perfusion in these patients.

Keywords

Multiple Organ Failure Mucosal Blood Flow Splanchnic Blood Flow Mesenteric Blood Flow Splanchnic Perfusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caldini P, Permutt S, Waddell JA, Riley RL (1974) Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res 34:606–623PubMedGoogle Scholar
  2. 2.
    Biffl WL, Moore EE, Moore FA (1995) Gut-derived mediators of multiple organ failure: platelet-activating factor and interleukin-6. Br J Hosp Med 54:134–138PubMedGoogle Scholar
  3. 3.
    Fiddian-Green RG (1993) Associations between intramucosal acidosis in the gut and organ failure. Crit Care Med 21:S103–S107PubMedCrossRefGoogle Scholar
  4. 4.
    Kirton O, Windsor J, Wedderburn R et al (1998) Failure of splanchnic resuscitation in the acutely injured trauma patient correlates with multiple organ system failure and length of stay in the ICU. Chest 113:1064–1169PubMedCrossRefGoogle Scholar
  5. 5.
    Hartung T, Sauer A, Hermann C et al (1997) Overactivation of the immune system by translocated bacteria and bacterial products. Scand J Gastroenterol [Suppl] 222:98–99PubMedGoogle Scholar
  6. 6.
    Rombeau JL, Takala J (1997) Summary of round table conference: gut dysfunction in critical illness. Intensive Care Med 23:476–479PubMedCrossRefGoogle Scholar
  7. 7.
    Davies MG, Hagen P-O (1997) Systemic inflammatory response syndrome. Br J Surg 84: 920–935PubMedCrossRefGoogle Scholar
  8. 8.
    Fink MP (1994) Effect of critical illness on microbial translocation and gastrointestinal mucosal permeability. Semin Respir Infect 9:256–260PubMedGoogle Scholar
  9. 9.
    Takala J (1996) Determinants of splanchnic blood flow. Br J Anaesth 77:50–58PubMedGoogle Scholar
  10. 10.
    Anonymous. Third European Consensus Conference in Intensive Care Medicine (1996) Tissue hypoxia. How to detect, how to correct, how to prevent? Am J Respir Crit Care Med 154:1573–1578Google Scholar
  11. 11.
    Fink MP (1994) Effect of critical illness on microbial translocation and gastrointestinal mucosa permeability. Semin Respir Infect 9:256–260PubMedGoogle Scholar
  12. 12.
    Aranow JS, Fink MP (1996) Determinants of intestinal barrier failure in critical illness. Br J Anaesth 77:71–81PubMedGoogle Scholar
  13. 13.
    Lemaire LCJM, van Lanschot JJB, Stoutenbeek CP et al (1997) Bacterial translocation in multiple organ failure: cause or epiphenomenon still unproven. Br J Surg 84:1340–1350PubMedCrossRefGoogle Scholar
  14. 14.
    Gottlieb ME, Stratton HH, Newell JC, Shah DM (1984) Indocyanine green. Its use as an early indicator of hepatic dysfunction following injury in man. Arch Surg 119:264–268PubMedCrossRefGoogle Scholar
  15. 15.
    McLuckie A (1996) The COLD system of hemodynamic monitoring. Intensive Care World 13:24–28Google Scholar
  16. 16.
    Parviainen I, Ruokonen E, Takala J (1998) Dobutamine-induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardiac surgery. Br J Anaesth 74:277–282CrossRefGoogle Scholar
  17. 17.
    Elizade JI, Hernandez C, Llach J et al (1998) Gastric intramucosal acidosis in mechanically ventilated patients: role of mucosal blood flow. Crit Care Med 26:827–832CrossRefGoogle Scholar
  18. 18.
    Maynard ND, Bihari DJ, Dalton RN et al (1997) Liver function and splanchnic ischemia in critically ill patients. Chest 111:180–187PubMedCrossRefGoogle Scholar
  19. 19.
    Jacobson ED, Linford RH, Grossman MI (1966) Gastric secretion in relation to mucosal blood flow studied by a clearance technique. J Clin Invest 45:1–13PubMedCrossRefGoogle Scholar
  20. 20.
    Dalton JM, Gore DC, Makhoul RG et al (1995) Decreased splanchnic perfusion measured by duplex ultrasound in humans undergoing small volume hemorrhage. Crit Care Med 23: 491–497PubMedCrossRefGoogle Scholar
  21. 21.
    Iince C, van der Sluijs JP, Sinaasappel M et al (1994) Intestinal ischemia during hypoxia and experimental sepsis as observed by NADH videofluorimetry and quenching of Pd-porphine phosphorescence. Adv Exp Med Biol 361:105–110CrossRefGoogle Scholar
  22. 22.
    Pastores SM, Katz DP, Kvetan V (1996) Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome. Am J Gastroenterol 91:1697–1710PubMedGoogle Scholar
  23. 23.
    Turnbull RG, Talbot JA, Hamilton SM (1995) Hemodynamic changes and gut barrier function in sequential hemorrhagic and endotoxic shock. J Trauma 38:705–713PubMedCrossRefGoogle Scholar
  24. 24.
    Fink MP, Rothschild HR, Deniz YF et al (1989) Systemic and mesenteric O2 metabolism in endotoxic pigs: Effects of ibuprofen and meclofenamate. J Appl Physiol 67:1950–1957PubMedGoogle Scholar
  25. 25.
    De Backer D, Zhang H, Manikis P, Vincent JL (1996) Regional effects of dobutamine in endotoxic shock. J Surg Res 65:93–100PubMedCrossRefGoogle Scholar
  26. 26.
    Farquhar I, Martin CM, Lam C et al (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61:190–196PubMedCrossRefGoogle Scholar
  27. 27.
    Lam C, Tyml K, Martin C, Sibbald WJ (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083PubMedCrossRefGoogle Scholar
  28. 28.
    Garrison RN, Spain DA, Wilson MA et al (1998) Microvascular changes explain the “two-hit” theory of multiple organ failure. Ann Surg 227:851–860PubMedCrossRefGoogle Scholar
  29. 29.
    Cameron EM, Wang SY, Fink MP, Sellke FW (1998) Mesenteric and skeletal muscle microvascular responsiveness in subacute sepsis. Shock 9:184–192PubMedCrossRefGoogle Scholar
  30. 30.
    Wang X, Andersson R (1995) The role of endothelial cells in the systemic inflammatory response syndrome and multiple system organ failure. Eur J Surg 161:703–713PubMedGoogle Scholar
  31. 31.
    Curzen NP, Griffiths MJD, Evans TW (1994) Role of the endothelium in modulating the vascular response to sepsis. Clin Sci(Colch) 86:374Google Scholar
  32. 32.
    Avontuur JA, Bruining HA, Ince C (1996) Sepsis and nitric oxide. Adv Exp Med Biol 388: 551–567PubMedCrossRefGoogle Scholar
  33. 33.
    Fink MP (1996) Does tissue acidosis in sepsis indicate tissue hypoperfusion? [editorial]. Intensive Care Med 22:1144–1146PubMedCrossRefGoogle Scholar
  34. 34.
    Harris RA, Harris DL, Green DE (1968) Effect of Bordetella endotoxin upon mitochondrial respiration and energised processes. Arch Biochem Biophys 128:219–230PubMedCrossRefGoogle Scholar
  35. 35.
    Schaefer CF, Lerner MR, Biber B (1991) Dose-related reduction of intestinal cytochrome aa3 induced by endotoxin in rats. Circ Shock 33:17–25PubMedGoogle Scholar
  36. 36.
    Dahn MS, Lange MP, Wilson RF et al (1990) Hepatic blood flow and splanchnic oxygen consumption measurements in clinical sepsis. Surgery 107:295–301PubMedGoogle Scholar
  37. 37.
    Dahn MS, Lange P, Lobdell K et al (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101:69–80PubMedGoogle Scholar
  38. 38.
    Ruokonen E, Takala J, Kari A et al (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1296–1303PubMedCrossRefGoogle Scholar
  39. 39.
    Friedman G, Berlot G, Kahn R, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23:1184–1193PubMedCrossRefGoogle Scholar
  40. 40.
    Olson D, Pohlman A, Hall JB (1996) Administration of low-dose dopamine to nonoliguric patients with sepsis syndrome does not raise intramucosal gastric pH nor improve creatinine clearance. Am J Respir Crit Care Med 154:1664–1670PubMedGoogle Scholar
  41. 41.
    Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272:1354–1357PubMedCrossRefGoogle Scholar
  42. 42.
    Ruokonen E, Takala J, Kari A et al (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1296–1303PubMedCrossRefGoogle Scholar
  43. 43.
    Levy B, Bollaert PE, Charpentier C et al (1997) Comparison of norepinephrine and dobuta-mine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med 23:282–287PubMedCrossRefGoogle Scholar
  44. 44.
    Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill. Lancet 339:195–199PubMedCrossRefGoogle Scholar
  45. 45.
    Giraud GD, MacCannell KL (1984) Decreased nutrient blood flow during dopamine-and epinephrine-induced intestinal vasodilatation. J Pharmacol Exp Ther 230:214–220PubMedGoogle Scholar
  46. 46.
    Habler O, Kleen M, Hutter J et al (1997) Effects of hemodilution on splanchnic perfusion and hepatorenal function. II. Renal perfusion and hepatorenal function. Eur J Med Res 2:419–424PubMedGoogle Scholar
  47. 47.
    Bitterman H, Triolo J, Lefer AM (1987) Use of hypertonic saline in the treatment of hemorrhagic shock. Circ Shock 21:271-283PubMedGoogle Scholar
  48. 48.
    Oud L, Kruse JA (1996) Progressive gastric intramucosal acidosis follows resuscitation from hemorrhagic shock. Shock 6:61–65PubMedCrossRefGoogle Scholar
  49. 49.
    Turnage RH, Kadesky KM, Rogers T et al (1995) Neutrophil regulation of splanchnic blood flow after hemorrhagic shock. Ann Surg 222:66–72PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson DJ, Johannigman JA, Branson RD et al (1991) The effect of low dose dopamine on gut hemodynamics during PEEP ventilation for acute lung injury. J Surg Res 50:344–349PubMedCrossRefGoogle Scholar
  51. 51.
    Ward HB, Einzig S, Bianco RW et al (1982) Effects of dopamine and dobutamine on the myocardial and systemic circulation during and following cardiopulmonary bypass in dogs. Pediatr Cardiol 3:257–264PubMedCrossRefGoogle Scholar
  52. 52.
    Chintala MS, Moore RJ, Lokhandwala MF, Jandyala BS (1993) Evaluation of the effects of dopexamine, a novel DA, receptor and ß2-adrenoreceptor agonist, on cardiac function and splanchnic circulation in a canine model of hemorrhagic shock. Arch Pharmacol 347:296–300CrossRefGoogle Scholar
  53. 53.
    Donati A, Battisti D, Rechioni A et al (1998) Predictive value of interleukin-6(IL-6), interleukin-8(IL-8) and gastric intramucosal pH(pH-i) in major abdominal surgery. Intensive Care Med 24:335CrossRefGoogle Scholar
  54. 54.
    Weite M, Pichler B, Groh J et al (1996) Perioperative mucosal pH and splanchnic endotoxin concentration in orthotopic liver transplantation [see comments]. Br J Anaesth 76:90–98Google Scholar
  55. 55.
    Bacher A, Mayer N, Rajek AM, Haider W (1998) Acute normovolemic haemodilution does not aggravate gastric mucosal acidosis during cardiac surgery. Intensive Care Med 24:313–321PubMedCrossRefGoogle Scholar
  56. 56.
    Chang MC, Meredith JW (1997) Cardiac preload, splanchnic perfusion, and their relationship during resuscitation in trauma patients. J Trauma 42:577–582PubMedCrossRefGoogle Scholar
  57. 57.
    Maynard ND, Bihari D, Beale R et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210PubMedCrossRefGoogle Scholar
  58. 58.
    Edouard AR, Dergremont A-C, Duranteau J et al (1994) Heterogeneous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20:414–420PubMedCrossRefGoogle Scholar
  59. 59.
    Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429PubMedCrossRefGoogle Scholar
  60. 60.
    Ruokonen E, Takala J, Kari A (1993) Regional blood flow and oxygen transport in patients with the low cardiac output syndrome after cardiac surgery. Crit Care Med 21:1304–1311PubMedCrossRefGoogle Scholar
  61. 61.
    Kainuma M, Kimura N, Nonami T et al (1992) The effect of dobutamine on hepatic blood flow and oxygen supply-uptake ratio during enflurane nitric oxide anesthesia in humans undergoing liver resection. Anaesthesiology 77:432–438CrossRefGoogle Scholar
  62. 62.
    Kaisers U, Pappert D, Langrehr JM et al (1996) Dopamine, dopexamine and dobutamine in liver transplant recipients: a comparison of their effects on hemodynamics, oxygen transport and hepatic venous oxygen saturation. Transpl Int 9:214–220PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1999

Authors and Affiliations

  • M. Poeze
  • J. W. M. Greve
  • G. Ramsay

There are no affiliations available

Personalised recommendations