Vitamin C pp 21-28 | Cite as

Metabolism and Metabolic Interactions of Vitamin C

  • A. M. Bode
  • J. G. G. Vethanayagan
Conference paper


Ascorbic acid is the most effective, least toxic, water-soluble antioxidant “free radical scavenging” vitamin known. It is important in the prevention of scurvy [1], in the processes of collagen synthesis [2], norepinephrine synthesis [3], amidation of peptide hormones [4], and regeneration of vitamin E [5] and provides protection against oxidative damage in a variety of tissues, including the eye (reviewed in [6]). Even though since 1990 over 5000 research studies have appeared, more information is needed regarding the mechanisms of vitamin C metabolism, the dietary requirement for maintaining optimal health, and the causes of deficiencies in disease states (reviewed in [7]). A major research focus in our laboratory is to determine the role of ascorbate in maintaining healthy physiologic function. A long-term goal is to understand the metabolic interactions of ascorbate with other antioxidant molecules (e.g., glutathione) under normal and disease conditions (e.g., diabetes) which result in an alteration in antioxidant metabolism. The following text will give a condensed background of what is known regarding ascorbate metabolism.


Protein Disulfide Isomerase Dehydroascorbic Acid Dehydroascorbate Reductase Diabetic Liver Bovine Corneal Endothelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghorbani AJ, Eichler C (1994) Scurvy. J Am Acad Dermatol 30:881–883PubMedCrossRefGoogle Scholar
  2. 2.
    Sauberlich HE (1994) Pharmacology of vitamin C. Annu Rev Nutr 14:371–391PubMedCrossRefGoogle Scholar
  3. 3.
    Friedman S, Kaufman S (1965) 3,4-dihydroxyphenylethylamine beta-hydroxylase. J Biol Chem 210:4763–4769Google Scholar
  4. 4.
    Glembotski CC (1984) The alpha-amidation of alpha-melanocyte stimulating hormone in intermediate pituitary requires ascorbic acid. J Biol Chem 259:13041–13046PubMedGoogle Scholar
  5. 5.
    Chan AC (1993) Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol 71:725–741PubMedCrossRefGoogle Scholar
  6. 6.
    Rose RC, Bode AM (1991) Ocular ascorbate transport and metabolism. Comp Biochem Physiol A 110:273–285CrossRefGoogle Scholar
  7. 7.
    Bode AM (1997) Metabolism of vitamin C in health and disease. In: Sies H (ed) Antioxidants in disease mechanisms and therapy. Academic, San Diego, pp 21–47 (Advances in pharmacology)Google Scholar
  8. 8.
    Thompson KH, Godin DV (1995) Micronutrients and antioxidants in the progression of diabetes. Nutr Res 15:1377–1410CrossRefGoogle Scholar
  9. 9.
    Rose RC, Choi JL, Bode AM (1992) Short term effects of oxidized ascorbic acid on bovine corneal endothelium and human placenta. Life Sci 50:1543–1549PubMedCrossRefGoogle Scholar
  10. 10.
    Merlini D, Caramia F (1965) Effect of dehydroascorbic acid on the islets of Langerhans of the rat pancreas. J Cell Biol 26:245–261PubMedCrossRefGoogle Scholar
  11. 11.
    Hisanaga K, Sagar SM, Sharp FR (1992) Ascorbate neurotoxicity in cortical cell culture. Ann Neurol 31:562–568PubMedCrossRefGoogle Scholar
  12. 12.
    Rose RC (1989) The ascorbate redox potential of tissues: a determinant or indicator of disease? News Physiol Sci 4:190–195Google Scholar
  13. 13.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  14. 14.
    Bode AM, Green E, Yavarow CR, Wheeldon SL, Bolken S, Gomez Y, Rose RC (1993) Ascorbic acid regeneration by bovine irisciliary body. Curr Eye Res 12:593–601PubMedCrossRefGoogle Scholar
  15. 15.
    Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radical Biol Med 17:333–349CrossRefGoogle Scholar
  16. 16.
    Wells WW, Xu DP, Yang YF, Rocque PA (1990) Mammalian thioltransferase (glutare-doxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265:15361–15364PubMedGoogle Scholar
  17. 17.
    Delbello B, Maellaro E, Sugherini L, Santucci A, Comporti M, Casini AF (1994) Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3 alpha-hydroxysteroid dehydrogenase. Biochem J 304:385–390Google Scholar
  18. 18.
    Park JB, Levine M (1996) Purification, cloning and expression of dehydroascorbic acid-reducing activity from human neutrophils: identification as glutaredoxin. Biochem J 315:931–938PubMedGoogle Scholar
  19. 19.
    Wells WW, Yang Y, Deits TL, Gan ZR (1993) Thioltransferases. Adv Enzymol Relat Areas Mol Biol 66:149–201PubMedGoogle Scholar
  20. 20.
    Noiva R, Lennarz WJ (1992) Protein disulfide isomerase: a multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem 267:3553–3556PubMedGoogle Scholar
  21. 21.
    Oppermann UTC, Maser E (1996) Characterization of a 3 alpha-hydroxysteroid dehydrogenase carbonyl reductase from the gram-negative bacterium comamonas testosteroni. Eur J Biochem 241:744–749PubMedCrossRefGoogle Scholar
  22. 22.
    Xu DP, Washburn MP, Sun GP, Wells WW (1996) Purification and characterization of a glutathione dependent dehydroascorbate reductase from human erythrocytes. Biochem Biophys Res Commun 221:117–121PubMedCrossRefGoogle Scholar
  23. 23.
    Maellaro E, Delbello B, Sugherini L, Santucci A, Comporti M, Casini AF (1994) Purification and characterization of glutathione-dependent dehydroascorbate reductase from rat liver. Biochem J 301:471–476PubMedGoogle Scholar
  24. 24.
    Paolicchi A, Pezzini A, Saviozzi M, Piaggi S, Andreuccetti M, Chieli E, Malvaldi G et al (1996) Localization of a GSH-dependent dehydroascorbate reductase in rat tissues and subcellular fractions. Arch Biochem Biophys 333:489–495PubMedCrossRefGoogle Scholar
  25. 25.
    Cha MK, Kim IH (1996) Glutathione-linked thiol peroxidase activity of human serum albumin: a possible antioxidant role of serum albumin in blood plasma. Biochem Biophys Res Commun 622:619:625Google Scholar
  26. 26.
    Fleming JE, Bensch KG (1983) Conformational changes of serum albumin induced by ascorbic acid. Int J Pept Protein Res 22:565–567PubMedCrossRefGoogle Scholar
  27. 27.
    Washko PW, Wang Y, Levine M (1993) Ascorbic acid recycling in human neutrophils. J Biol Chem 268:15531–15535PubMedGoogle Scholar
  28. 28.
    Welch RW, Bersten P, Butler JD, Levine M (1993) Ascorbic acid accumulation and transport in human fibroblasts. Biochem J 294:505–510PubMedGoogle Scholar
  29. 29.
    Bergsten P, Yu R, Kehrl J, Levine M (1995) Ascorbic acid transport and distribution in human B lymphocytes. Arch Biochem Biophys 317:208–214PubMedCrossRefGoogle Scholar
  30. 30.
    Welch RW, Wang YH, Crossman A, Park JB, Kirk KL, Levine M (1995) Accumulation of vitamin c (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J Biol Chem 270:12584–12592PubMedCrossRefGoogle Scholar
  31. 31.
    Bergsten P, Moura AS, Atwater I, Levine M (1994) Ascorbic acid and insulin secretion in pancreatic islets. J Biol Chem 269:1041–1045PubMedGoogle Scholar
  32. 32.
    Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW (1994) Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood 84:1628–1634PubMedGoogle Scholar
  33. 33.
    Vera JC, Rivas CI, Velasquez FV, Zhang RH, Concha II, Golde DW (1995) Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. J Biol Chem 270:23706–23712PubMedCrossRefGoogle Scholar
  34. 34.
    Giuliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267CrossRefGoogle Scholar
  35. 35.
    Kaul N, Siveskiiliskovic N, Thomas TP, Hill M, Khaper N, Singal PK (1995) Probucol improves antioxidant activity and modulates development of diabetic cardiomyopathy. Nutrition 11:551–554PubMedGoogle Scholar
  36. 36.
    Ceriello A, Dellorusso P, Amstad P, Cerutti P (1996) High glucose induces antioxidant enzymes in human endothelial cells in culture: evidence linking hyperglycemia and oxidative stress. Diabetes 45:471–477PubMedCrossRefGoogle Scholar
  37. 37.
    Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T (1996) Oxidative damage to DNA in diabetes mellitus. Lancet 347:444–445PubMedCrossRefGoogle Scholar
  38. 38.
    Will JC, Byers T (1996) Does diabetes mellitus increase the requirement for vitamin C? Nutr Rev 54:193–202PubMedCrossRefGoogle Scholar
  39. 39.
    Vijayalingam S, Parthiban A, Shanmugasundaram KR, Mohan V (1996) Abnormal antioxidant status in impaired glucose tolerance and noninsulin dependent diabetes mellitus. Diabetic Med 13:715–719PubMedCrossRefGoogle Scholar
  40. 40.
    Sundaram RK, Bhaskar A, Vijayalingam S, Viswanathan M, Moham R, Shanmugasundaram KR (1996) Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci 90:255–260PubMedGoogle Scholar
  41. 41.
    Bode AM, Yavarow CR, Fry DA, Vargas T (1993) Enzymatic basis for altered ascorbic acid and dehydroascorbic acid levels in diabetes. Biochem Biophys Res Commun 191:1347–1353PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1998

Authors and Affiliations

  • A. M. Bode
    • 1
  • J. G. G. Vethanayagan
    • 1
  1. 1.Department of Physiology, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksUSA

Personalised recommendations