Advertisement

Clinical pharmacology of local anaesthetic agents

  • L. E. Mather
  • D. H.-T. Chang
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)

Abstract

Local anaesthetic agents (LAAs) are defined as those agents which, when applied in the region of a neuronal structure, reversibly prevent its conduction, thereby producing an absence of sensation in the region innervated. Substances that are irreversible or otherwise neurolytic or act by systemic mechanisms clearly do not fit the definition. It may be reasonably added that they should do this predictably and with an acceptable difference between therapeutic and toxic doses but, for these agents, tissue toxicity is evaluated as foremost. Hence evaluation of the therapeutic index (defined in traditional pharmacological terms as the ratio of lethal to therapeutic doses) is not the primary question although it is the secondary question for agents passing the test of tissue toxicity. Only those LAAs that do not cause tissue toxicity can be further considered for their other pharmacological properties.

Keywords

Local Anaesthetic Agent Total Body Clearance Conjugate Acid Tissue Toxicity Local anaesthetICs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braun H (1905) Uber einiger neue ortliche Anaesthetica (Stovam, Alypm, Novocain). Dtsch Klm Wochenschr 31. 1667–1671CrossRefGoogle Scholar
  2. 2.
    Luduena FP (1969) Duration of local anaesthesia. Annu Rev Pharmacol 9: 503–520PubMedCrossRefGoogle Scholar
  3. 3.
    Lofgren N (1948) Studies on local anaesthetics. Xylocame: a new synthetic drug. PhD Thesis, University of StockholmGoogle Scholar
  4. 4.
    Tucker GT, Mather LE (1998) Properties, absorption and pharmacokinetics of local anaesthetics. In: Cousins MJ, Bridenbaugh PO (eds) Neural blockade in clinical anaesthesia. Lippincott-Raven, Philadelphia, pp 55–95Google Scholar
  5. 5.
    Rosenberg PH, Kytta J, Aida A (1986) Absorption of bupivacame, etidocame, hgnocame and ropivacame into n-heptane, rat sciatic nerve and human extradural and subcutaneous fat Br J Anaesth 58: 310–314Google Scholar
  6. 6.
    Rutten AJ, Mather LE, McLean CF, Nancarrow C (1993) Tissue distribution of bupivacame enantiomers in sheep Chirality 5: 485–491Google Scholar
  7. 7.
    Friberger P, Aberg G (1971) Some physicochemical properties of the racemates and the optically active isomers of two local anaesthetic compounds. Acta Pharm Suec 8: 361364Google Scholar
  8. 8.
    Langerman L, Basinath M, Grant GJ (1994) The partition coefficient as a predictor of local anaesthetic potency for spinal anaesthesia: evaluation of five local anaesthetics in a mouse model. Anaesth Analg 79: 490–494CrossRefGoogle Scholar
  9. 9.
    Bernards CM, Hill HF (1992) Physical and chemical properties of drug molecules governing their diffusion through the spinal meninges. Anaesthesiology 77. 750–756CrossRefGoogle Scholar
  10. 10.
    McEllistrem RF, Bennington RG, Roth SH (1993) In vitro determination of human Jura mater permeability to opioids and local anaesthetics. Can J Anaesth 40: 165–169PubMedCrossRefGoogle Scholar
  11. 11.
    Mather LE, Rutten AJ (1991) Stereochemistry and its relevance in anaesthesiology. Curr Opin Anaesth 4: 473–479CrossRefGoogle Scholar
  12. 12.
    Lee-Son S, Wang GK, Concus A et al (1992) Stereoselective inhibition of neuronal sodium channels by local anaesthetics. Anaesthesiology 77: 324–335CrossRefGoogle Scholar
  13. 13.
    Reynolds F (1997) Does the left hand know what the right hand is doing — an appraisal of single enantiomer local anaesthetics? Int J Obstet Anaesth 6: 257–269CrossRefGoogle Scholar
  14. 14.
    Akerman B, Persson H, Tegner C (1967) Local anaesthetic properties of the optically active isomers of prilocame ( Citanest ). Acta Pharmacol Toxicol 25: 233–241Google Scholar
  15. 15.
    Aberg G (1972) Toxicological and local anaesthetic effects of optically active isomers of two local anaesthetic compounds. Acta Pharmacol Toxicol 31: 273–286CrossRefGoogle Scholar
  16. 16.
    Mazoit JX, Boico O, Samii K (1993) Myocardial uptake of bupivacame: II. Pharmacokinetics and pharmacodynamics of bupivacaine enantiomers in the isolated perfused rabbit heart. Anaesth Analg 77: 477–482Google Scholar
  17. 17.
    Valenzuela C, Delpon E, Tamkun MM et al (1995) Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophys J 69. 418–427PubMedCrossRefGoogle Scholar
  18. 18.
    Huang YF, Pryor ME, Veering BT, Mather LE (1998) Cardiovascular and central nervous system effects of bupivacaine and levobupivacaine in sheep. Anaesth Analg 86: 797–804Google Scholar
  19. 19.
    Mather LE, McCall P, McNicol PL (1995) Bupivacaine enantiomer pharmacokinetics af- ter intercostal neural blockade in liver transplant patients. Anaesth Analg 80: 328–335Google Scholar
  20. 20.
    Mather LE (1991) Disposition of mepivacame and bupivacaine enantiomers in sheep. Br J Anaesth 67: 239–246PubMedCrossRefGoogle Scholar
  21. 21.
    Rutten AJ, Mather LE, McLean CF (1991) Cardiovascular effects and regional clearances of intravenous bupivacaine in sheep: enantiomeric analysis. Br J Anaesth 67: 247–256PubMedCrossRefGoogle Scholar
  22. 22.
    Akerman B, Hellberg IB, Trossvik C (1988) Primary evaluation of the local anaesthetic properties of the amino amide agent ropivacame (LEA 103). Acta Anaesthesiol Scand 32: 571–578PubMedCrossRefGoogle Scholar
  23. 23.
    Markham A, Faulds D (1996) Ropivacaine — a review of its pharmacology and therapeutic use in regional anaesthesia. Drugs 52: 429–449PubMedCrossRefGoogle Scholar
  24. 24.
    Gristwood R, Bardsley H, Baker H et al (1994) Reduced cardiotoxicity of levobupivacame compared with racemic bupivacaine (Marcaine): new clinical evidence. Exp Opin Invest Drugs 3. 1209–1212CrossRefGoogle Scholar
  25. 25.
    Cox CR, Faccenda KA, Gilhooly C et al (1998) Extradural SH-bupivacaine — comparison with racemic RS-bupivacaine. Br J Anaesth 80: 289–293PubMedCrossRefGoogle Scholar
  26. 26.
    Fyhr P, Hogstrom C (1988) A preformulation study of the kinetics of the racemization of roprvacaine hydrochloride. Acta Pharm Suec 25: 121–132PubMedGoogle Scholar
  27. 27.
    Capogna G, Celleno D, Laudano D et al (1995) Alkalinization of local anaesthetics: which block, which local anaesthetic. Reg Anaesth 20. 369–377Google Scholar
  28. 28.
    Langerman L, Grant GJ, Zakowski M et al (1992) Prolongation of epidural anaesthesia using a lipid drug carrier with procaine, lidocame and tetracaine. Anaesth Analg 75: 900905CrossRefGoogle Scholar
  29. 29.
    Boogaerts J, Declercq A, Lafont N et al (1993) Toxicity of bupivacaine encapsulated into liposomes and injected intravenously. comparison with plain solutions Anaesth Analg 76: 553–555Google Scholar
  30. 30.
    Malinkovsky J-M, Bernard J-M, Le Corre P et al (1995) Motor and blood pressure effects of epidural sustained release bupivacaine from polymer microspheres a dose-response study in rabbits. Anaesth Analg 81. 519–524Google Scholar
  31. 31.
    Jones JW, Davis AT (1993) Stability of bupivacaine hydrochloride in polypropylene syringes Am J Hosp Pharm 50 2364–2365Google Scholar
  32. 32.
    Rang HP, Ritchie JM (1968) On the electrogenic sodium pump in mammalian nonmyelinated nerve fibers and its activation by various cations. J Physiol 196: 183–221PubMedGoogle Scholar
  33. 33.
    Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242: 50–61PubMedCrossRefGoogle Scholar
  34. 34.
    Butterworth JF, Stnchartz GR (1990) Molecular mechanisms of local anaesthesia: a review. Anaesthesiology 72: 711–734CrossRefGoogle Scholar
  35. 35.
    Strichartz GR (1998) Neural physiology and local anaesthetic action. In: Cousins MJ, Bridenbaugh PO (eds) Neural blockade in clinical anaesthesia. Lippincott-Raven, Philadelphia, pp 35–54Google Scholar
  36. 36.
    Olschewski A, Hempelmann G, Vogel W, Safronov BV (1998) Blockade of Na+ and K+ currents by local anaesthetics in the dorsal horn neurons of the spinal cord. Anaesthesiology 88: 172–179CrossRefGoogle Scholar
  37. 37.
    Arhem P, Frankenhaeuser B (1974) Local anaesthetics: effects on permeability properties of nodal membrane in myelinated nerve fibres from Xenopus. Acta Physiol Scand 91: 1121Google Scholar
  38. 38.
    Brau ME, Nau C, Hempelmann G, Vogel W (1995) Local anaesthetics potently block a potential insensitive potassium channel in myelinated nerve. J Gen Physiol 105: 485–505PubMedCrossRefGoogle Scholar
  39. 39.
    Mazoit JX, Cao LS, Salim K (1996) Binding of bupivacaine to human serum proteins, isolated albumin and isolated alpha- 1-acid glycoprotein. Differences between the two enantiomers are partly due to cooperativity. J Pharmacol Exp Ther 276: 109–115Google Scholar
  40. 40.
    Hirota K, Browne T, Appadu BL, Lambert DG (1997) Do local anaesthetics interact with dihydropyndme binding sites on neuronal L-type Cat+ channels? Br J Anaesth 78: 185–188PubMedCrossRefGoogle Scholar
  41. 41.
    Carmehet E, Morad M, Van der Heyden G, Vereecke J (1986) Electrophysiological effects of tetracaine in single guinea-pig ventricular myocytes. J Physiol 376: 143–161Google Scholar
  42. 42.
    Oyama Y, Sadoshima J, Tokutomi N, Akaike N (1988) Some properties of inhibitory action of lidocaine on the Cat+ current of single isolated frog sensory neurons. Brain Res 442: 223–228PubMedCrossRefGoogle Scholar
  43. 43.
    Sugiyama K, Muteki T (1994) Local anaesthetics depress the calcium current rat sensory neurons in culture. Anaesthesiology 80: 1369–1378CrossRefGoogle Scholar
  44. 44.
    Omote K, Iwasaki H, Kawamata Met al (1995) Effect of verapamil on spinal anaesthesia with local aesthetics. Anaesth Analg 80: 444–448Google Scholar
  45. 45.
    Lynch C (1986) Depression of myocardial contractility in vitro by bupivacaine, etidocaine, and lidocame Anaesth Analg 65: 551–559Google Scholar
  46. 46.
    Li Y-M, Wingrove DE, Too HP et al (1995) Local anaesthetics inhibit substance P binding and evoked increases in intracellular Cat+. Anaesthesiology 82: 166–172CrossRefGoogle Scholar
  47. 47.
    Bolger GT, Marcus KA, Daly JW (1987) Local anaesthetics differentiate dihydropyndme calcium antagonist binding sites in rat brain and cardiac membranes. J Pharmacol Exp Ther 240: 922–930PubMedGoogle Scholar
  48. 48.
    Rane SG, Holz GGIV, Dunlap K (1987) Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflugers Arch 409: 361–366PubMedCrossRefGoogle Scholar
  49. 49.
    For AP, Nowycky MC, Tsien RW (1987) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J Physiol 394: 149–172Google Scholar
  50. 50.
    Emanuelson BM, Persson J, Sandin S, Alm C, Gustafsson LL (1997) Intramdividual and interindividual variability in the disposition of the local anaesthetic ropivacaine in healthy subjects. Ther Druy Monit 19: 126–131CrossRefGoogle Scholar
  51. 51.
    Burm AG, van der Meer AD, van Kleef JW et al (1994) Pharmacokmetics of the enantiomers of bupivacaine following intravenous administration of the racemate. Br J Clin Pharmacol 38: 125–129PubMedGoogle Scholar
  52. 52.
    Burm AGL, Cohen IMC, van Kleef JW et al (1997) Pharmacokinetics of the enantiomers of mepivacaine after intravenous administration of the racemate in volunteers. Anaesth Analg 84: 85–89Google Scholar
  53. 53.
    Tucker GT, Mather LE, Lennard MS, Gregory A (1990) Plasma concentrations of the stereoisomers of prilocaine after administration of the racemate: implications for toxicity? Br J Anaesth 65: 333PubMedCrossRefGoogle Scholar
  54. 54.
    Veering BT, Burm AG, Vletter AA et al (1992) The effect of age on the systemic absorption, disposition and pharmacodynamics of bupivacaine after epidural administration. Clin Pharmacokinet 22: 75–84PubMedCrossRefGoogle Scholar
  55. 55.
    Emanuelsson BMK, Persson J, Alm C et al (1997) Systemic absorption and block after epidural injection of ropivacaine in healthy volunteers. Anaesthesiology 87: 1309–1317CrossRefGoogle Scholar
  56. 56.
    Kietzmann D, Foth H, Geng WP et al (1995) Transpulmonary disposition of prilocaine, mepwacaine, and bupwacaine in humans in the course of epidural anaesthesia. Acta Anaesthesiol Scand 39: 885–890PubMedCrossRefGoogle Scholar
  57. 57.
    Sharrock N, Mather LE, Go G, Sculco TP (1998) Arterial and pulmonary arterial concentrations of the enantiomers of bupivacaine following epidural injection in elderly patients. Anaesth Analg 86: 812–817Google Scholar
  58. 58.
    Mather LE, Huang YF, Pryor ME, Veering BT (1998) Systemic and regional pharmacokinetics of bupivacaine and levobupivacaine in sheep. Anaesth Analg 86: 805–811Google Scholar
  59. 59.
    Butterworth JF IV, Lief PA, Strichartz GR (1988) The pH-dependent local anaesthetic activity of diethylaminoethanol, a procaine metabolite. Anaesthesiology 68: 501–506CrossRefGoogle Scholar
  60. 60.
    Butterworth JF IV, Cole LR (1990) Low concentrations of procaine and diethylaminoethanol reduce the excitability but not the action potential amplitude of hippocampal pyramidal cells. Anaesth Analg 71: 404–410CrossRefGoogle Scholar
  61. 61.
    Bruguerolle B, Attolmi L, Gantenbein M (1994) Acute toxicity of bupivacaine metabolites in mice. Clin Exp Pharmacol Physiol 21: 997–999PubMedCrossRefGoogle Scholar
  62. 62.
    Chang YF, Charles AK (1995) Uptake and metabolism of delta 1-piperidme-2-carboxylic acid by synaptosomes from rat cerebral cortex. Biochim Biophys Acta 1238: 2933Google Scholar
  63. 63.
    Ekstrom G, Gunnarsson UB (1996) Ropivacaine, a new amide-type local anaesthetic agent, is metabolized by cytochromes p450 la and 3a in human liver microsomes. Drug Metab Dispos 24: 955–961PubMedGoogle Scholar
  64. 64.
    Halldm MM, Bredberg E, Angelin B et al (1996) Metabolism and excretion of ropivacame in humans. Drug Metab Dispos 24: 962–968Google Scholar

Copyright information

© Springer Verlag Italia, Milano 1999

Authors and Affiliations

  • L. E. Mather
  • D. H.-T. Chang

There are no affiliations available

Personalised recommendations