Advertisement

Role of the central nervous system in processing pain stimuli and perspectives of pharmacological intervention

  • E. Masoero
  • L. Favalli
  • S. Govoni
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)

Abstract

Pain, perceivable through conscious integration of nociceptive stimuli, is classified into somatic pain, characterized by intense and localized sharp sensation, and visceral pain, characterized by diffuse, deep and slow–in–onset painful sensation. Based on the current knowledge, the proposal of the existence of a single central pain centre has to be rejected due to the complexity of the systems that modulate pain transmission. It is worth considering that each cerebral area perceives as pain signals received from alterations in the peripheral region on which it exerts its own control (objective sensation). Moreover, affective and emotional components play an important role in pain perception (subjective sensation).

Keywords

Opioid Receptor Dorsal Horn NMDA Antagonist Spinal Dorsal Horn Pain Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Melzack R, Wall PD (1965) Pain mechanism: a new theory. Science 150: 971–979PubMedCrossRefGoogle Scholar
  2. 2.
    Dubuisson D, Wall PD (1980) Descending influence of receptive fields and activity of single units in laminae I, II, III of cat spinal cord. Brain Res 199: 283–298PubMedCrossRefGoogle Scholar
  3. 3.
    Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Ann Rev Neurosci 14: 219–245PubMedCrossRefGoogle Scholar
  4. 4.
    Basbaum AI, Fields H (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7: 309–338PubMedCrossRefGoogle Scholar
  5. 5.
    Gebhart GF (1982) Opiate and opiod effects on brain stem neurons: relevance to nociception and antinociception mechanism. Pain 12: 93–140PubMedCrossRefGoogle Scholar
  6. 6.
    Fields HL, Anderson SD (1978) Evidence that raphe-spinal neurons mediate opiate and midbram stimulation produced analgesia. Pain 5: 333–349PubMedCrossRefGoogle Scholar
  7. 7.
    Jessel TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus Nature 268: 549–551Google Scholar
  8. 8.
    Pernow B (1984) Substance P. Pharmacol Rev 35: 86–114Google Scholar
  9. 9.
    Hosobuchi Y, Emson PC, Iversen LL (1982) Elevated cerebrospinal fluid substance Pin arachnoiditis is reduced by systemic administration of morphine Biochem Psychopharmacol 33: 497–500Google Scholar
  10. 10.
    Tang J, Chou J, Yang HYT, Costa E (1983) Substance P stimulates the release of met5enkephalm-Arg6-Phe7 and met5-enkephalin from rat spinal cord. Neuropharmacology 22: 1147–1150PubMedCrossRefGoogle Scholar
  11. 11.
    Faccini E, Uzumaki H, Govoni S, Missale C, Spano PF, Covelli V, Trabucchi M (1984) Afferent fibers mediate the increase of met-enkephalin elicited in rat spinal cord by localized pain. Pain 18: 25–31PubMedCrossRefGoogle Scholar
  12. 12.
    Yamamoto T (1996) N-methyl-D-aspartate (NMDA) receptor and pain. Masui 45: 1312–1318PubMedGoogle Scholar
  13. 13.
    Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386. 721–724PubMedCrossRefGoogle Scholar
  14. 14.
    Dickenson AH (1997) NMDA receptor antagonists. interaction with opiods. Acta Anaesthesiol Scan 41: 112–115CrossRefGoogle Scholar
  15. 15.
    Harris JA, Corsi M, Quartaroli M, Arban R, Bentivoglio M (1996) Upregulation of spinal glutamate receptors in chronic pain. Neuroscience 74: 7–12PubMedCrossRefGoogle Scholar
  16. 16.
    Zakusov VV, Ostrovskaya RU, Bulayev VM (1983) GABA-opiates interactions in the activity of analgesics. Arch Int Pharmacodyn Ther 265: 61–75PubMedGoogle Scholar
  17. 17.
    Simon EJ (1991) Opiod receptors and endogenous opiod peptides. Med Res Rev 11: 257–274CrossRefGoogle Scholar
  18. 18.
    Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 88: 295PubMedCrossRefGoogle Scholar
  19. 19.
    Weihe E, Millau MJ, Leibold A, Nohr D, Herz A (1988) Co-localization of proenkephalin-and prodynorphm-derived opioid peptides in laminae IV/V spinal neurons revealed in arthritics rats. Neurosci Lett 29: 187–192CrossRefGoogle Scholar
  20. 20.
    Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meurs M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383: 819–823PubMedCrossRefGoogle Scholar
  21. 21.
    Panz ZZ, Tershner SA, Fields HL (1997) Cellular mechanism for anti-analgesic action of agonists of the kappa-opiod receptor. Nature 389: 382–385CrossRefGoogle Scholar
  22. 22.
    Evans C, Keith D, Morrison H, Magendzo K, Edwards R (1992) Cloning of delta opiod receptor by functional expression. Science 258: 1952–1955PubMedCrossRefGoogle Scholar
  23. 23.
    Reisine T, Brownstein MJ (1994) Opiod and cannabinoid receptors. Curr open in Neurobiol 4: 406–412CrossRefGoogle Scholar
  24. 24.
    Herz A (1993) Opioids I. Handbook of experimental pharmacology. Springer-Verlag, Berlin Heidelberg New York, p 104Google Scholar
  25. 25.
    Collin E, Cesselin F (1991) Neurobiological mechanisms of opioid tolerance and dependence. Clin Neuropharmacol 14. 465–488PubMedCrossRefGoogle Scholar
  26. 26.
    Liaw WJ, Ho ST, Wang JJ, Wong CS, Lee HK (1996) Cellular mechanism of opioid tolerance. Acta Anaesthesiol Sin 34: 221–234Google Scholar
  27. 27.
    Aceto MD, Dewey WL, Portoghese PS, Takemori AE (1986) Effects of 13-funaltrexamme on morphine dependence in rats and monkeys. Eur J Pharmacol 123: 387–393PubMedCrossRefGoogle Scholar
  28. 28.
    Alexander SPH, Peters JA (1998) Receptor and ion channel nomenclature. Trends Pharmacol Sci (Suppl 9 ): 58–59Google Scholar
  29. 29.
    Baamonde A, Dauge V, Gacel G, Roques BP (1991) Systemic administration of Tyr-DSer(O-tert-butyl)-Gly-Phe-Leu-Thr(O-tert-butyl), a highly selective delta opioid agonist, induces mu receptor-mediated analgesia in mice. J Pharmacol Exp Ther 257: 767–773PubMedGoogle Scholar
  30. 30.
    Eisenberg RM (1993) DAMGO stimulates the hypothalamo-pituitary-adrenal axis through a mue opiod receptor. J Pharmacol Exp Ther 266: 985–991PubMedGoogle Scholar
  31. 31.
    Ho J, Mannes AJ, Dubner R, Caudle RM (1997) Putative kappa2 opioid agonists are antihyperalgesic in a rat model of inflammation. J Pharmacol Exp Ther 281. 136–141PubMedGoogle Scholar
  32. 32.
    Maldonado R, Negus S, Koob GF (1992) Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta-and kappa-selective opioid antagonists. Neuropharmacology 31. 1231–1241PubMedCrossRefGoogle Scholar
  33. 33.
    Menkens K, Bilsky EJ, Wild KD, Portoghese PS, Reid LD, Porreca F (1992) Cocaine place preference is blocked by the delta-opioid receptor antagonist, naltrindole. Eur J Pharmacol 219: 345–346PubMedCrossRefGoogle Scholar
  34. 34.
    Noble F, Cox BM (1996) Differences among mouse strains in the regulation by mu, delta1 and delta2 opioid receptors of striatal adenylyl cyclases activated by dopamine D1 or adenosine A2A receptors. Brain Res 716: 107–117PubMedCrossRefGoogle Scholar
  35. 35.
    Raynor K, Kong H, Mestek A, Bye LS, Tian M, Liu J, Yu L, Reisine T (1995) Characterization of the cloned human µ opioid receptor. J Pharmacol Exp Ther 272: 423–428PubMedGoogle Scholar
  36. 36.
    Simonin F, Befort K, Gaveriaux-Ruff C, Matthes H, Nappey V, Lannes B, Micheletti G, Kieffer B (1994) The human delta opiod receptor: genomic organization, cDNA cloning, functional expression, and distribution in human brain. Mol Pharmacol 46.1015–1021Google Scholar
  37. 37.
    Sofuoglu M, Portoghese PS, Takemori AE (1992) Maintenance of acute morphine tolerance in mice by selective blockage of kappa opioid receptors with norbinaltorphimine. Eur J Pharmacol 210: 159–162PubMedCrossRefGoogle Scholar
  38. 38.
    Takemory AE, Portoghese PS (1993) Enkephalin antinociception in mice is mediated by delta 1- and delta 2-opioid receptors in the brain and in spinal cord, respectively. Eur J Pharmacol 242: 145–150CrossRefGoogle Scholar
  39. 39.
    Ward SJ, Portoghese PS, Takemori AE (1982) Improved assays for the assessment of kappa-and delta-properties of opioid ligands. Eur J Pharmacol 85: 163–170PubMedCrossRefGoogle Scholar
  40. 40.
    Levy MH (1996) Pharmacologic treatment of cancer pain. New Engl J Med 335: 1124–1132PubMedCrossRefGoogle Scholar
  41. 41.
    Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or Substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257: 1276–1279PubMedCrossRefGoogle Scholar
  42. 42.
    Brasseur L (1997) Revue des thérapeutiques pharmacologiques actuelles de la doleur. Drugs 53 (Suppl 2): 10–17PubMedCrossRefGoogle Scholar
  43. 43.
    Dray A, Urban L, Dickenson A (1994) Pharmacology of chronic pain. Trends Pharmacol Sci 15: 190–197PubMedCrossRefGoogle Scholar
  44. 44.
    Fusco BM, Giacovazzo M (1997) Peppers and pain, the promise of capsaicin. Drugs 53: 909–914PubMedCrossRefGoogle Scholar
  45. 45.
    Hua HY, Chen P, Hwang J, Yaksh TL (1997) Antinociception induced by civamidine, an orally active capsaicin analogue. Pain 71: 313–322PubMedCrossRefGoogle Scholar
  46. 46.
    Wiesenfeld-Hallin Z (1998) Combined opioid-NMDA antagonist therapies. Drugs 55: 1–4PubMedCrossRefGoogle Scholar
  47. 47.
    Lehmann KA (1997) Tramadol in acute pain. Drugs 53 (Suppl 2): 25–33PubMedCrossRefGoogle Scholar
  48. 48.
    Lewis KS, Han NH (1997) Tramadol: a new centrally acting analgesic. Am J Health Sys Pharm 54: 643–652Google Scholar
  49. 49.
    Raffa RB, Nayak RK, Liao S, Minn FL (1995) The mechanism(s) of action and pharmacokinetics of tramadol hydrochloride. Rev Contemp Pharmacother 6: 485–497Google Scholar
  50. 50.
    Raffa RB, Friderichs E (1996) The basic science aspect of tramadol hydrochloride. Pain Rev 3: 249–271Google Scholar
  51. 51.
    Raffa RB (1996) A novel approach to the pharmacology of analgesics. Am J Med 101. 40S - 46SPubMedGoogle Scholar
  52. 52.
    Dray A, Urban L (1996) New pharmacological strategies for pain relief. Ann Rev Pharmacol Toxicol 36. 253–280CrossRefGoogle Scholar
  53. 53.
    Donner B, Zenz M, Tryba M, Strumpf M (1996) Direct conversion from oral morphine to transdermal fentanyl• a multicenter study in patients with cancer pain Pain 64. 527–534Google Scholar
  54. 54.
    Lesser GJ, Grossman SA, Leong KW, Lo H, Eller S (1996) In vitro and in vivo studies of subcutaneous hydromorphone implants designed for treatment of cancer pain. Pain 65. 265–272PubMedCrossRefGoogle Scholar

Copyright information

© Springer Verlag Italia, Milano 1999

Authors and Affiliations

  • E. Masoero
  • L. Favalli
  • S. Govoni

There are no affiliations available

Personalised recommendations