Skip to main content

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

The pathophysiology of pain syndromes refers to two groups of experimental models aimed to mimic inflammatory and neuropathic pain [1]. In the first case, an overstimulation of peripheral nociceptors leads to pain sensation and to abnormal sensory modalities characterized by changes in quality sensation, like allodynia or increased response to painful stimuli such as hyperalgesia. In the second case, a lesion of peripheral or central pain pathways causes persistent pain that also comprises aberrant somatosensory processes, such as the phantom limb. In inflammatory pain, pain fibres are intact and no anatomical rearrangements in spinal and supraspinal tracts are present. In contrast, in neuropathic pain all tracts involved in pain transmission undergo severe anatomical rearrangements that take part in pain syndrome generation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merskey H, Bogduk N (eds) (1994) Classification of chronic pain. IASP Press, Seattle

    Google Scholar 

  2. Robertson LM, Kerppola TK, Vendrell M, Luk D, Smeyne RJ, Bocchiaro C, Morgan JI, Curran T (1995) Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14: 241–252

    Article  PubMed  CAS  Google Scholar 

  3. Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47: 134–178

    Google Scholar 

  4. Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328: 632–634

    Article  PubMed  CAS  Google Scholar 

  5. Curran T, Morgan JI (1994) Fos: an immediate-early transcription factor in neurons. J Neurobiol 26: 403–412

    Article  Google Scholar 

  6. Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of longterm memory-a molecular framework. Nature 322: 419–422

    Article  PubMed  CAS  Google Scholar 

  7. Abel T, Martin KC, Bartsch D, Kandel ER (1998) Memory suppressor genes: inhibitory constraints on the storage of long-term memory. Science 279: 338–341

    Article  PubMed  CAS  Google Scholar 

  8. Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, Nestler EJ (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13: 1235–1244

    Article  PubMed  CAS  Google Scholar 

  9. Nye HE, Nestler EJ (1996) Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Mol Pharmacol 49: 636–645

    PubMed  CAS  Google Scholar 

  10. Pennypacker KR, Hong J-S, McMillian MK (1995) Implications of prolunged expression of Fos-related antigens. Trends Pharmacol Sci 16: 317–321

    Article  PubMed  CAS  Google Scholar 

  11. Iadarola MJ, Brady LS, Draisci G, Dubner R (1988) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation• stimulus specificity, behavioural parameters and opioid receptor binding. Pain 35: 313–326

    Article  PubMed  CAS  Google Scholar 

  12. Dubner R, Ruda MA (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 15: 96–103

    Article  PubMed  CAS  Google Scholar 

  13. Calzà L, Pozza M, Zanni M, Manzini CU, Manzini E, Hokfelt T (1998). Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82. 575–589

    Article  PubMed  Google Scholar 

  14. Civelli O, Douglass J, Goldstein A, Herbert E (1985) Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci USA 82. 4291–4295

    Article  PubMed  CAS  Google Scholar 

  15. Zhu YS, Branch AD, Robertson HD, Inturnsi CE (1994) Cloning and characterization of hamster proenkephalin gene. DNA Cell Biol 13: 25–35

    Article  PubMed  CAS  Google Scholar 

  16. Hunter JC, Woodburn VL, Durieux C, Pettersson EKE, Poat JA, Hughes J (1995) C-fos antisense ohgodeaxynucleotide increases formalin-induced nociception and regulates preprodynorphin expression. Neuroscience 65: 485–492

    Article  PubMed  CAS  Google Scholar 

  17. Abbadie C, Besson JM (1994) Chronic treatments with aspirin or acetaminophen reduce both the development of polyarthrins and Fos-like immunoreactivity in rat lumbar spinal cord. Pain 57: 45–54

    Article  PubMed  CAS  Google Scholar 

  18. Calzà L, Pozza M, Manzini CU, Masora MT, Manzini E (1996) C-fos activation and NOS mRNA regulation in pain pathways during adjuvant-induced arthritis in the rat. In: Bonucci E (ed) Biology and pathology of cell-matrix interactions Cleup, Padova, pp 318–326

    Google Scholar 

  19. Zanni M, Pozza M, Arletti R, Magnani F, Calzà L (1998) Long-term regulation of opioids in the spinal cord of arthritic rats. Society for Neuroscience Meeting, Los Angeles

    Google Scholar 

  20. Ceccatelli S, Vdlar MJ, Goldstein M, Hokfelt T (1989) Expression of fos-like immunoreactivity in transmitter charctenzed neurons after stress Proc Natl Acad Sci USA 86: 9569–9573

    CAS  Google Scholar 

  21. Smith DW, Day TA (1994) C-fos expression in hypothalamic neurosecretory and brainstem catecholamme cells following noxious somatic stimuli Neuroscience 58: 765–775

    CAS  Google Scholar 

  22. Calzà L, Giardino L, Zanni M, Gallinelli A, Toschi L (1991) Neuropeptide Y as a central relay in the control of the body homeostasis In: Genazzani AR, Nappi G, Petraglia F, Martignoni E (eds) Stress and related disorders from adaptation to dysfunction. Parthenon Publishing, Carnforth, pp 239–246

    Google Scholar 

  23. Calzà L, Giardino L, Ceccatelli S (1993) Stress-related increase of NOS mRNA in the paraventricular nucleus of young and old rats. Neuroreport 4. 627–630

    Article  PubMed  Google Scholar 

  24. Filaretov AA, Bogdanoc AI, Yarushkma NI (1996) Stress-induced analgesia. The role of hormones produced by the hypophyseal-adrenocortical system. Neurosci Behav Physiol 26: 572–578

    Google Scholar 

  25. Hokfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17: 22–30

    Article  PubMed  CAS  Google Scholar 

  26. Hokfelt T, Zhang X, Xu X-Q, Ji R-R, Shi T, Corness J, Kerekes N, Landry M, Rydh-Rinder M, Broberger C, Wiesenfeld-Hallin Z, Bartfai T, Elde R, Ju G (1997) Transition of pain from acute to chronic cellular and synaptic mechanisms. In: Jensen TS, Turner JA, Wiesenfeld-HalhnZ (eds) Proceedings on the 8th World Congress on Pain. IASP Press, Seattle, pp 133–154

    Google Scholar 

  27. Hokfelt T, Wiesenfeld-Hallin Z, Villan M J, Melander T (1987) Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci Lett 83: 217–220

    Article  PubMed  CAS  Google Scholar 

  28. Verge VM, Xu XJ, Langel U, Hokfelt T, Wiesenfeld-Hallin Z, Bartfai T (1993) Evidence for endogenous inhibition of autotomy by galanin in the rat after sciatic nerve section. demonstrated by chronic intrathecal infusion of a high affinity galanin receptor antagonist. Neurosci Lett 149. 193–197

    Article  PubMed  CAS  Google Scholar 

  29. Ji RR, Zhang Q, Bedecs K, Arvidsson J, Zhang X, Xu XJ, Wiesenfeld-Hallin Z, Bartfai T, Hokfelt T (1994) Galanen antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy. Proc Natl Acad Sci 91.12540–12543

    Google Scholar 

  30. Kidd BL, Morris VH, Urban L (1996) Pathophysiology of joint pain. Ann Rheumatic Dis 55: 276–283

    Article  CAS  Google Scholar 

  31. Schaible H-G, Jarrott B, Hope PJ, Duggan AW (1990) Release of immunoreactive substance P in the spinal cord during development of acute arthritis in the knee joint of the cat: a study with antibody microprobes. Brain Res 529: 214–223

    Article  PubMed  CAS  Google Scholar 

  32. Pozza M, Bettelli C, Magnani F, Mascia MT, Manzini E, Calzà L (1998) Is neuronal nitric oxide involved in adjuvant-induced joint inflammation. Eur J Pharmacol (in press)

    Google Scholar 

  33. Choi Y, Raja SN, Moore LC, Tobin JR (1996) Neuropathic pain in rats is associated with altered nitric oxide synthase activity in neural tissue. J Neurol Sci 138: 14–20

    Article  PubMed  CAS  Google Scholar 

  34. Verge VMK, Xu Z, Xu X-J, Wiesenfeld-Hallin Z, Hokfelt T (1992) Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci 89: 11617–11621

    Article  PubMed  CAS  Google Scholar 

  35. Steel JH, Terenghi G, Chung JM, Na HS, Carlton SM, Polak JM (1994) Increased nitric oxyde synthase immunoreactivity in rat dorsal root ganglia in a neuropathie pain model. Neurosci Lett 169: 81–84

    Article  PubMed  CAS  Google Scholar 

  36. Lam HHD, Hanley DF, Trapp BD, Saito S, Raja S, Dawson TM, Yamagushi H (1996) Induction of spinal cord neurol nitric oxide synthase ( NOS) after formalin injection in the rat paw. Neurosci Lett 210: 201–204

    Google Scholar 

  37. Traub RJ, Solodkin A, Meller ST, Gebhart GF (1994) Spinal cord NADPH-diaphorase histochemical staining but not nitric oxide synthase immunoreactivity increases following carrageenan-produced hindnapaw inflammation in the rat. Brain Res 668: 204–210

    Article  PubMed  CAS  Google Scholar 

  38. Esser RE, Hildebrand AR, Angelo RA, Watts LM, Murphey MD, Baugh LE (1995) Measurement of radiographic changes in adjuvant-induced arthritis in rats by quantitative image analysis. Arthritis Rheum 38: 129–138

    Article  PubMed  CAS  Google Scholar 

  39. Cochran FR, Selph J, Sherman P (1996) Insights into the role of nitric oxide in inflammatory arthritis. Med Res Rev 16: 547–563

    Article  PubMed  CAS  Google Scholar 

  40. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Ann Rev Physiol 57: 737–769

    Article  CAS  Google Scholar 

  41. Metier ST, Gebhart GF (1993) Nitric oxide ( NO) and nociceptive processing in the spinal cord. Pain 52: 127–136

    Google Scholar 

  42. Coderre TJ (1993) The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol Neurobiol 7: 229–246

    Article  PubMed  CAS  Google Scholar 

  43. Woolf CJ, Doubell TP (1994) The pathophysiology of chronic pain-increased sensitivity to low threshold Ab-fibre inputs. Curr Opin Neurobiol 4: 525–534

    Article  PubMed  CAS  Google Scholar 

  44. Neumann S, Doubell TP, Leslie T, Woolf CJ (1996) Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 384: 360–364

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Verlag Italia, Milano

About this chapter

Cite this chapter

Calzà, L., Pozza, M., Zanni, M. (1999). Neurochemical memory in pain circuits. In: Tiengo, M., Paladini, V.A., Rawal, N. (eds) Regional Anaesthesia Analgesia and Pain Management. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2240-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2240-9_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0044-5

  • Online ISBN: 978-88-470-2240-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics