Perfusion MRI

  • W. Rashid
  • D. H. Miller
Part of the Topics in Neuroscience book series (TOPNEURO)


Perfusion is a measure of blood supply to a tissue. The term is used to describe the volume of blood passing through an organ normalised to the mass of the organ. It is an important indicator of tissue health and viability as it offers an insight into the efficiency of delivery of nutrients and removal of waste products, and is measured in millilitres of blood per gram of tissue per unit time. As the brain receives a significant proportion of total circulation — around 20% — it follows that changes in cerebral blood flow (CBF) may play an important role in disease pathogenesis and monitoring.


Multiple Sclerosis Cerebral Blood Flow Cerebral Blood Volume Arterial Spin Labelling Magnetic Resonance Imaging Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacobs L, Kinkel W, Polanchini I, Kinkel R (1986) Correlations of nuclear magnetic resonance imaging, computerised tomography and clinical profiles in multiple sclerosis. Neurology 36: 27–34PubMedGoogle Scholar
  2. 2.
    Sorensen AG, Buonanno FS, Gonzalez RG et al. (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and haemodynamically weighted echo-planar MR imaging. Radiology 199: 391–401PubMedGoogle Scholar
  3. 3.
    Detre JA, Alsop DC (1999) Perfusion magnetic resonance imaging with continuous arterial spin labelling: methods and clinical applications in the central nervous system. Eur J Radiol 30: 115–124PubMedCrossRefGoogle Scholar
  4. 4.
    Warach S, Levin JM, Schomer D et al (1994) Hyperperfusion of ictal seizure focus demonstrated by magnetic resonance perfusion imaging: SPECT, EEG and clinical correlation. AJNR Am J Neuroradiol 15: 965–968PubMedGoogle Scholar
  5. 5.
    Chang L, Ernst T, Leonido-Yee M, Speck 0 (2000) Perfusion MRI detects rCBF abnormalities in early stages of HIV-cognitive motor complex. Neurology 54: 386–396Google Scholar
  6. 6.
    McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50: 121–127PubMedCrossRefGoogle Scholar
  7. 7.
    Kurtzke JF (1983) Rating neurological impairment in multiple sclerosis; an expanded disability status scale (EDSS). Neurology 33: 1444–1452PubMedGoogle Scholar
  8. 8.
    Filippi M, Campi A, Dousset V et al (1995) A magnetisation transfer imaging study of normal appearing white matter in multiple sclerosis. Neurology 45: 478–482PubMedGoogle Scholar
  9. 9.
    Christiansen P, Gideon P, Thomsen C et al (1993) Increased water self diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis. Acta Neurol Scand 87: 195–199PubMedCrossRefGoogle Scholar
  10. 10.
    Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143: 53Google Scholar
  11. 11.
    Kety SS (1996) The cerebral circulation. In: Fishman AP, Richards DW (eds) Circulation of the blood: men and ideas. Oxford University Press, New YorkGoogle Scholar
  12. 12.
    Fick A (1870) Ueber die Messung des Blutquantums in den Herzventrikeln. Sitzungsber Phys Med Ges, Würzburg, 9 July 1870Google Scholar
  13. 13.
    Brooks DJ, Leenders KL, Head G et al (1984) Studies on regional cerebral oxygen utilisation and cognitive function in multiple sclerosis. J Neurol Neurosurg Psychiatry 47: 1182–1191PubMedCrossRefGoogle Scholar
  14. 14.
    Matthew E, Andreason P, Carson RE et al (1993) Reproducibility of resting cerebral blood flow measurements with H215O positron emission tomography in humans. J Cereb Blood Flow Metab 13: 748–754PubMedCrossRefGoogle Scholar
  15. 15.
    Podreka I, Baumgartner C, Suess E et al (1989) Quantification of regional cerebral blood flow with IMP-SPECT. Reproducibility and clinical relevance of flow values. Stroke 20: 183–191PubMedCrossRefGoogle Scholar
  16. 16.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14: 249–265PubMedCrossRefGoogle Scholar
  17. 17.
    Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10: 393–407Google Scholar
  18. 18.
    Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16: 309–321PubMedGoogle Scholar
  19. 19.
    Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 137: 676–686Google Scholar
  20. 20.
    Tofts PS, Kermode AG (1989) Blood-brain barrier permeability in multiple sclerosis using labelled DTPA with PET, CT and MRI. J Neurol Neurosurg Psychiatry 52: 1019–1020PubMedCrossRefGoogle Scholar
  21. 21.
    Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23: 37–45PubMedCrossRefGoogle Scholar
  22. 22.
    Edelman RR, Siewert B, Darby DG et al (1994) Qualitative mapping of cerebral blood flow and functional localisation with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192: 513–520PubMedGoogle Scholar
  23. 23.
    Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679PubMedCrossRefGoogle Scholar
  24. 24.
    Alsop DC, Detre JA (1998) Multisection cerebral blood flow MR imaging with continuous arterial spin labelling. Radiology 208: 410–416PubMedGoogle Scholar
  25. 25.
    Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labelling. Accounting for capillary water permeability. Magn Reson Med 48: 27–41PubMedCrossRefGoogle Scholar
  26. 26.
    Parkes LM, Rashid W, Chard DT, Tofts PS (2002) Normal cerebral perfusion measurements using CASL: reproducibility, age and gender effects. Proc of the 10`h Annual Meeting Int Soc Magn Reson Med, Hawaii, p 431Google Scholar
  27. 27.
    Tievsky AL, Gonzalez RG, Lev MH et al (1998) Correlation of DWI/MTT mismatch and MRA/CTA in acute stroke. In: Proceedings of the 36th Annual Meeting of the American Society of Neuroradiology, PhiladelphiaGoogle Scholar
  28. 28.
    Guckel FJ, Brix G, Schmiedek P et al (1996) Cerebrovascular reserve capacity in patients with occlusive cerebrovascular disease: assessment with dynamic susceptibility contrast-enhanced MR imaging and the acetazolamide stimulation test. Radiology 201: 405–412PubMedGoogle Scholar
  29. 29.
    Tanaka C, Fukunaga M, Ebisu T et al (1997) Cerebral perfusion imaging using FAIR: acetazolamide effects and clinical application. Fifth Scientific Meeting and Exhibition of the Society of Magnetic Resonance in Medicine, Vancouver, p 579Google Scholar
  30. 30.
    Renshaw P, English C, Satlin A et al (1996) Comparison of brain SPECT and dynamic susceptibility contrast MR imaging in Alzheimer’s disease. In: Proceedings of the 82“d Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, p 131Google Scholar
  31. 31.
    Alsop DC, Detre JA, Grossman M (2000) Assessment of cerebral blood flow in Alzheimer’s disease by spin-labelled magnetic resonance imaging. Ann Neurol 47: 93–100PubMedCrossRefGoogle Scholar
  32. 32.
    Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48: 347–356PubMedGoogle Scholar
  33. 33.
    Aronen H, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191: 41–51PubMedGoogle Scholar
  34. 34.
    Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211: 791–798PubMedGoogle Scholar
  35. 35.
    Lev MH, Schaefer PW, Barest GD et al (1997) Radiation necrosis or glioma recurrence? Magnetic resonance relative cerebral blood volume imaging in proton beam patients. In: Proceedings of the 82 Scientific Assembly and Annual Meeting of the Radiological Society of North America, ChicagoGoogle Scholar
  36. 36.
    Fisel CR, Ackermann JL, Buxton RB et al (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med. 17: 336–347.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolf RL, Alsop DC, French JA et al (2001) Detection of menial temporal lobe hypoperfusion in patients with temporal lobe epilepsy using arterial spin labelled perfusion MRI. AJNR Am J Neuroradiol 22: 1334–41PubMedGoogle Scholar
  38. 38.
    Detre JA, Wang J (2002) Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 113: 621–634PubMedCrossRefGoogle Scholar
  39. 39.
    Lycke J, Wikkelsö C, Bergh A et al (1993) Regional cerebral blood flow in multiple sclerosis measured by single photon emission tomography with technetium-99m hexamethyl-propyleneamine oxime. Eur Neurol 33: 163–167PubMedCrossRefGoogle Scholar
  40. 40.
    Bakshi R, Miletich RS, Kinkel PR et al (1998) High-resolution fluordeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging 8: 228–234PubMedCrossRefGoogle Scholar
  41. 41.
    Blinkenberg M, Rune K, Jensen CV et al (2000) Cortical cerebral metabolism correlates with MRI lesion load and cognitive dysfunction in MS. Neurology 54: 558–564PubMedGoogle Scholar
  42. 42.
    Signorini M, Paulesu E, Friston K et al (1999) Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage 9: 63–80PubMedCrossRefGoogle Scholar
  43. 43.
    Haselhorst R, Kappos L, Bilecen D et al (2000) Dynamic susceptibility contrast MR imaging of plaque development in multiple sclerosis: application of an extended blood-brain barrier leakage correction. J Magn Reson Imaging 11: 495–505PubMedCrossRefGoogle Scholar
  44. 44.
    Jensen CV, Rostrup E, Blinkenberg M et al (1995) Relative regional cerebral blood-volume in MS. Proc Soc Magn Reson 2: 1297Google Scholar
  45. 45.
    Petrella JR, Yang Y, Richert N et al (1997) Dynamic contrast MR measurements of relative cerebral blood volume in enhancing multiple sclerosis lesions: Comparison to nonenhancing lesions and normal appearing white matter. Proc Intern Soc Magn Reson Med 1: 646Google Scholar
  46. 46.
    Bakshi R, Benedict RH, Bermel RA et al (2002) T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 59: 62–68PubMedCrossRefGoogle Scholar
  47. 47.
    Filippi M, Bozzali M, Comi G (2001) Magnetisation transfer and diffusion tensor MR imaging of basal ganglia from patients with multiple sclerosis. J Neurol Sci 183: 69–72PubMedCrossRefGoogle Scholar
  48. 48.
    Wylezinska M, Cifelli A, Matthews P et al (2002) Neuronal damage in thalamic grey matter in relapsing-remitting multiple sclerosis. Proc Int Soc Magn Reson Med 10: 592Google Scholar
  49. 49.
    Wylezinska M, Cifelli A, Matthews P, Jezzard P (2001) Thalamic neuronal loss in multiple sclerosis: a combined structural and spectroscopic study. Proc Int Soc Magn Reson Med 9: 473Google Scholar
  50. 50.
    Rashid W, Parkes LM, Ingle GT et al (2002) Comparative investigation of cerebral perfusion in multiple sclerosis using a novel technique. Proc Int Soc Magn Reson Med 10: 1264Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 2003

Authors and Affiliations

  • W. Rashid
  • D. H. Miller

There are no affiliations available

Personalised recommendations