Diffusion-Weighted MRI

  • M. Filippi
  • M. A. Rocca
Part of the Topics in Neuroscience book series (TOPNEURO)


Although conventional T2-weighted magnetic resonance imaging (MRI) is sensitive for the detection of multiple sclerosis (MS) lesions, it is not without important limitations. First, MRI lacks specificity with regard to the heterogeneous pathological substrates of individual lesions, and in consequence does not allow tissue damage to be quantified. Edema, inflammation, demyelination, remyelination, gliosis, and axonal loss [1] all have a similar appearance of hyperintensity on T2-weighted images. Secondly, T2-weighted images do not delineate tissue damage occurring in the normal-appearing white (NAWM) and gray matter (NAGM), which usually represents a large portion of the brain tissue from MS patients and is known to be damaged in MS [2–5]. These limitations are only partially overcome by the use of postcontrast T1-weighted scans. Gadolinium-enhanced T1-weighted images allow active and inactive lesions to be distinguished from each other [6, 7], since enhancement occurs as a result of increased blood-brain barrier (BBB) permeability [8] and corresponds to areas with ongoing inflammation [9]. However, the activity of the lesions as demonstrated on postcontrast T1-weighted imaging still does not provide information on tissue damage. Hypointense lesions on T1-weighted images correspond to areas where chronic severe tissue disruption has occurred [10], and their extent correlates with the clinical severity of the disease and its evolution over time [11, 12]. Still, the extent of T1-hypointense lesions may not correspond to the severity of the intrinsic lesion pathology and provides no information about NAWM and NAGM damage.


Multiple Sclerosis Apparent Diffusion Coefficient Fractional Anisotropy Magn Reson Image Magnetization Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334PubMedCrossRefGoogle Scholar
  2. 2.
    Filippi M, Tortorella C, Bozzali M (1999) Normal-appearing-white-matter changes in multiple sclerosis: the contribution of magnetic resonance techniques. Mult Scler 5: 273–282PubMedGoogle Scholar
  3. 3.
    Kidd D, Barkhof F, McConnel R et al (1999) Cortical lesions in multiple sclerosis. Brain 122: 17–26PubMedCrossRefGoogle Scholar
  4. 4.
    Brownell B, Hughes JT (1962) The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry 25: 315–320PubMedCrossRefGoogle Scholar
  5. 5.
    Lumsden CE (1970) The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW eds. Handbook of clinical neurology, vol 9. North-Holland, Amsterdam, pp 217–309Google Scholar
  6. 6.
    McFarland HF, Frank JA, Albert PS et al (1992) Using gadolinium-enhanced magnetic resonance imaging to monitor disease activity in multiple sclerosis. Ann Neurol 32: 758–766PubMedCrossRefGoogle Scholar
  7. 7.
    Miller DH, Barkhof F, Nauta JJP (1993) Gadolinium enhancement increased the sensitivity of MRI in detecting disease activity in MS. Brain 116: 1077–1094PubMedCrossRefGoogle Scholar
  8. 8.
    Kermode AG, Tofts P, Thompson AJ et al (1990) Heterogeneity of blood-brain barrier changes in multiple sclerosis: an MRI study with gadolinium-DTPA enhancement. Neurology 40: 229–235PubMedGoogle Scholar
  9. 9.
    Katz D, Taubenberger JK, Cannella B et al (1993) Correlation between magnetic resonance imaging findings and lesion development in multiple sclerosis. Ann Neurol 34: 661–669PubMedCrossRefGoogle Scholar
  10. 10.
    van Walderveen MAA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50: 1282–1288PubMedGoogle Scholar
  11. 11.
    Truyen L, van Waesberghe JHTM, van Walderveen MAA et al (1996) Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47: 1469–1476PubMedGoogle Scholar
  12. 12.
    Rovaris M, Comi G, Rocca MA et al (1999) Relevance of hypointense lesions on fast fluid-attenuated inversion recovery MR images as a marker of disease severity in cases of multiple sclerosis. AJNR Am J Neuroradiol 20: 813–820PubMedGoogle Scholar
  13. 13.
    Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161: 401–407PubMedGoogle Scholar
  14. 14.
    Le Bihan D, Turner R, Pekar J, Moonen CTW (1991) Diffusion and perfusion imaging by gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1: 7–8PubMedCrossRefGoogle Scholar
  15. 15.
    Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson B 103: 247–254PubMedCrossRefGoogle Scholar
  16. 16.
    Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201: 637–648PubMedGoogle Scholar
  17. 17.
    Basser PJ, Pierpaoli C (1996) Microstructural features measured using diffusion tensor imaging. J Magn Reson B 111: 209–219PubMedCrossRefGoogle Scholar
  18. 18.
    Larsson HBW, Thomsen C, Frederiksen J et al (1992) In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis. Magn Reson Imaging 10: 7–12PubMedCrossRefGoogle Scholar
  19. 19.
    Christiansen P, Gideon P, Thomsen C et al (1993) Increased water self-diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis. Acta Neurol Scand 87: 195–199PubMedCrossRefGoogle Scholar
  20. 20.
    Horsfield MA, Lai M, Webb SL et al (1996) Apparent diffusion coefficients in benign and secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36: 393–400PubMedCrossRefGoogle Scholar
  21. 21.
    Droogan AG, Clark CA, Werring DJ et al (1999) Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging. Magn Reson Imaging 17: 653–661PubMedCrossRefGoogle Scholar
  22. 22.
    Werring DJ, Clark CA, Barker GJ et al (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52: 1626–1632PubMedGoogle Scholar
  23. 23.
    Filippi M, lannucci G, Cercignani M et al (2000) A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 57: 1017–1021PubMedCrossRefGoogle Scholar
  24. 24.
    Cercignani M, lannucci G, Rocca MA et al (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54: 1139–1144PubMedGoogle Scholar
  25. 25.
    Rocca MA, Cercignani M, lannucci G et al (2000) Weekly diffusion-weighted imaging of normal-appearing white matter in MS. Neurology 55: 882–884PubMedGoogle Scholar
  26. 26.
    Werring DJ, Brassat D, Droogan AG et al (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis. A serial diffusion MRI study. Brain 123: 1667–1676PubMedCrossRefGoogle Scholar
  27. 27.
    Bammer R, Augustin M, Strasser-Fuchs S et al (2000) Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44: 583–59PubMedCrossRefGoogle Scholar
  28. 28.
    Nusbaum AO, Lu D, Tang CY, Atlas SW (2000) Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on T1-weighted MR images. AJR Am J Roentgenol 175: 821–825PubMedGoogle Scholar
  29. 29.
    Roychowdhury S, Maldijan JA, Grossman RI (2000) Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions. AJNR Am J Neuroradiol 21: 869–874PubMedGoogle Scholar
  30. 30.
    Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56: 304–311PubMedGoogle Scholar
  31. 31.
    Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70: 311–317PubMedCrossRefGoogle Scholar
  32. 32.
    Ciccarelli O, Werring DJ, Wheeler-Kingshott CA et al (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56: 926–933PubMedGoogle Scholar
  33. 33.
    Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41: 81–91PubMedCrossRefGoogle Scholar
  34. 34.
    Guo AC, Jewells VL, Provenzale JM (2001) Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging. AJNR Am J Neuroradiol 22: 1893–1900PubMedGoogle Scholar
  35. 35.
    Guo AC, MacFall JR, Provenzale JM (2002) Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal-appearing white matter. Radiology 222: 729–736PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson AJ, Polman CH, Miller DH et al (1997) Primary progressive multiple sclerosis. Brain 120: 1085–1096PubMedCrossRefGoogle Scholar
  37. 37.
    Cercignani M, Inglese M, Pagani E et al (2001) Mean diffusivity and fractional anisotropy histograms in patients with multiple sclerosis. AJNR Am J Neuroradiol 22: 952–958PubMedGoogle Scholar
  38. 38.
    Iannucci G, Rovaris M, Giacomotti L et al (2001) Correlations between measures of multiple sclerosis pathology derived from T2, T1, magnetization transfer and diffusion tensor MR imaging. AJNR Am J Neuroradiol 22: 1462–1467PubMedGoogle Scholar
  39. 39.
    Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal-appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814PubMedCrossRefGoogle Scholar
  40. 40.
    Goodkin DE, Rooney WD, Sloan R et al (1998) A serial study of new MS lesions and the white matter from which they arise. Neurology 51: 1689–1697PubMedGoogle Scholar
  41. 41.
    Hajnal IV, Doran M, Hall AS et al (1991) MR imaging of anisotropically restricted diffusion of water in system: technical, anatomic, and pathologic considerations. J Comput Assist Tomogr 15: 1–18PubMedCrossRefGoogle Scholar
  42. 42.
    Peyser JM, Edwards KR, Poser CM, Filskov SB (1980) Cognitive function in patients with multiple sclerosis. Arch Neurol 37: 577–579PubMedCrossRefGoogle Scholar
  43. 43.
    Rovaris M, Iannucci G, Falautano M et al (2002) Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 195: 103–109PubMedCrossRefGoogle Scholar
  44. 44.
    Bozzali M, Cercignani M, Sormani MP et al (2002) Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol 23: 985–988PubMedGoogle Scholar
  45. 45.
    Rovaris M, Bozzali M, Iannucci G et al (2002) Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study. Arch Neurol 59: 1406–1412PubMedCrossRefGoogle Scholar
  46. 46.
    Filippi M, Bozzali M, Comi G (2001) Magnetization transfer and diffusion tensor MR imaging of basal ganglia from patients with multiple sclerosis. J Neurol Sci 183: 69–72PubMedCrossRefGoogle Scholar
  47. 47.
    Roelcke U, Kappos L, Lechner-Scott J et al (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48: 1566–1571PubMedGoogle Scholar
  48. 48.
    Filippi M, Rocca MA, Colombo B et al (2002) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15: 559–567PubMedCrossRefGoogle Scholar
  49. 49.
    Brück W, Bitsch A, Kolenda H et al (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42: 783–793PubMedCrossRefGoogle Scholar
  50. 50.
    van Waesberghe JHTM, Kamphorst W, De Groot CJA (1999) Axonal loss in MS lesions: MR insights into substrates of disability. Ann Neurol 46: 747–754PubMedCrossRefGoogle Scholar
  51. 51.
    Filippi M, Rocca MA, Rizzo G et al (1998) Magnetization transfer ratios in multiple sclerosis lesions enhancing after different doses of gadolinium. Neurology 50: 1289–1293Google Scholar
  52. 52.
    Filippi M, Rocca MA, Comi G (1998) Magnetization transfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159: 162–165PubMedCrossRefGoogle Scholar
  53. 53.
    Dousset V, Gayou A, Brochet B, Caille JM (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51: 1150–1155PubMedGoogle Scholar
  54. 54.
    Filippi M, Rocca MA, Sormani MP et al (1999) Short-term evolution of individual enhancing MS lesions studied with magnetization transfer imaging. Magn Reson Imaging 17: 979–984PubMedCrossRefGoogle Scholar
  55. 55.
    van Buchem MA, McGowan JC, Kolson DL et al (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 36: 632–636PubMedCrossRefGoogle Scholar
  56. 56.
    Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52: 588–594PubMedGoogle Scholar
  57. 57.
    Filippi M, Inglese M, Rovaris M et al (2000) Magnetization transfer imaging to monitor the evolution of MS: a one-year follow up study. Neurology 55: 940–946PubMedGoogle Scholar
  58. 58.
    Tortorella C, Viti B, Bozzali M et al (2000) A magnetization transfer histogram study of normal appearing brain tissue in multiple sclerosis. Neurology 54; 186–193PubMedGoogle Scholar
  59. 59.
    Nusbaum AO, Tang CY, Wei TC et al (2000) Whole-brain diffusion MR histograms differ between MS subtypes. Neurology 54: 1421–1426PubMedGoogle Scholar
  60. 60.
    Inglese M, Rovaris M, Bianchi S et al (2001) Magnetic resonance imaging, magnetisation transfer imaging and diffusion weighted imaging correlates of optic nerve, brain and cervical cord damage in Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 70: 444–449PubMedCrossRefGoogle Scholar
  61. 61.
    Inglese M, Salvi F, Iannucci G et al (2002) Magnetization transfer and diffusion tensor MR imaging of acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 23: 267–272PubMedGoogle Scholar
  62. 62.
    Castriota Scanderbeg A, Tomaiuolo F, Sabatini U et al (2000) Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. AJNR Am J Neuroradiol 21: 862–868Google Scholar
  63. 63.
    Mainero C, De Stefano N, Iannucci G et al (2001) Correlates of MS disability assessed in-vivo using aggregates of MR quantities. Neurology 56: 1331–1334PubMedGoogle Scholar
  64. 64.
    Rocca MA, Falini A, Colombo B et al (2002) Adaptive functional changes in the cerebral cortex of patients with nondisabling multiple sclerosis correlate with the extent of brain structural damage. Ann Neurol 51: 330–339PubMedCrossRefGoogle Scholar
  65. 65.
    Filippi M, Rocca MA, Falini A et al (2002) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage 15: 537–546PubMedCrossRefGoogle Scholar
  66. 66.
    Rocca MA, Matthews PM, Caputo D et al (2002) Evidence for widespread movement-associated functional MRI changes in patients with PPMS. Neurology 58: 866–872PubMedGoogle Scholar
  67. 67.
    Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45: 265–269PubMedCrossRefGoogle Scholar
  68. 68.
    Mori S, Kaufmann WE, Davatzikos C et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47: 215–223PubMedCrossRefGoogle Scholar
  69. 69.
    Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96: 10422–10427PubMedCrossRefGoogle Scholar
  70. 70.
    Tench CR, Morgan PS, Wilson M, Blumhardt LD (2002) White matter mapping using diffusion tensor MRI. Magn Reson Med 47: 967–972PubMedCrossRefGoogle Scholar
  71. 71.
    Iwasawa T, Matoba H, Ogi A et al (1997) Diffusion-weighted imaging of the human optic nerve: a new approach to evaluate optic neuritis in multiple sclerosis. Magn Reson Med 38: 484–491PubMedCrossRefGoogle Scholar
  72. 72.
    Wheeler-Kingshott CA, Parker GJM, Symms MR et al (2002) ADC mapping of the human optic nerve: increased resolution, coverage, and reliability with CSF-suppressed ZOOM-EPI. Magn Reson Med 47: 24–31PubMedCrossRefGoogle Scholar
  73. 73.
    Clark CA, Werring DJ, Miller DH (2000) Diffusion imaging of the spinal cord in vivo: estimation of the principal diffusivities and application to multiple sclerosis. Magn Reson Med 43: 133–138PubMedCrossRefGoogle Scholar
  74. 74.
    Ries M, Jones RA, Dousset V, Moonen CTW (2000) Diffusion tensor MRI of the spinal cord. Magn Reson Med 44: 884–892PubMedCrossRefGoogle Scholar
  75. 75.
    Bammer R, Fazekas F, Augustin M et al (2000) Diffusion-weighted MR imaging of the spinal cord. AJNR Am J Neuroradiol 21: 587–591PubMedGoogle Scholar
  76. 76.
    Robertson RL, Maier SE, Mulkern RV et al (2000) MR line-scan diffusion imaging of the spinal cord in children. AJNR Am J Neuroradiol 21: 1344–1348PubMedGoogle Scholar
  77. 77.
    Wheeler-Kingshott CA, Hickman SJ, Parker GJ et al (2002) Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 16: 93–102PubMedCrossRefGoogle Scholar
  78. 78.
    Bammer R, Augustin M, Prokesch RW et al (2002) Diffusion-weighted imaging of the spinal cord: interleaved echo-planar imaging is superior to fast spin-echo. J Magn Reson Imaging 15: 364–373PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2003

Authors and Affiliations

  • M. Filippi
  • M. A. Rocca

There are no affiliations available

Personalised recommendations