Advertisement

Magnetization Transfer Imaging

  • M. Rovaris
  • M. Filippi
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

In multiple sclerosis (MS), conventional magnetic resonance (MR) imaging (MRI) has proved to be sensitive for detecting disease-related abnormalities and their changes over time [1]. However, conventional MRI is not able to provide accurate estimates of the extent and nature of the associated tissue damage. Quantitative MR-based techniques, with increased pathological specificity to the heterogeneous substrates of central nervous system (CNS) pathology, have the potential to overcome these limitations. Among these techniques, magnetization transfer imaging (MTI) has been one of the most extensively applied to the assessment of MS, in part because of its ability to detect and quantify microstructural damage in tissues which appear normal on conventional MR images [2]. The present chapter will outline the major contributions of MTI to the study of MS pathobiology.

Keywords

Multiple Sclerosis Multiple Sclerosis Patient Multiple Sclerosis Lesion Magnetization Transfer Ratio Clinically Isolate Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rovaris M, Filippi M (1999) Magnetic resonance techniques to monitor disease evolution and treatment trial outcomes in multiple sclerosis. Curr Opin Neurol 12: 337–344PubMedCrossRefGoogle Scholar
  2. 2.
    Filippi M, Tortorella C, Bozzali M (1999) Normal-appearing-white-matter changes in multiple sclerosis: the contribution of magnetic resonance techniques. Mult Scler 5: 273–282PubMedGoogle Scholar
  3. 3.
    Wolff SD, Balaban RS (1994) Magnetization transfer imaging–practical aspects and clinical applications. Radiology 192: 593–599PubMedGoogle Scholar
  4. 4.
    Balaban RS, Ceckler TL (1992) Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q 8: 116–137PubMedGoogle Scholar
  5. 5.
    Wolff SD, Balaban RS (1989) Magnetization transfer contrast ( MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10: 135–144Google Scholar
  6. 6.
    Henkelman RM, Huang XM, Xiang QS et al (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29: 759–766PubMedCrossRefGoogle Scholar
  7. 7.
    McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334PubMedCrossRefGoogle Scholar
  8. 8.
    Dousset V, Grossman RI, Ramer KN et al (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging [published erratum appears in Radiology 1992;183:878]. Radiology 182: 483491Google Scholar
  9. 9.
    Dousset V, Brochet B, Vital A et al (1995) Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am J Neuroradiol 16: 225–231PubMedGoogle Scholar
  10. 10.
    Lexa FJ, Grossman RI, Rosenquist AC (1994) MR of wallerian degeneration in the feline visual system: characterization by magnetization transfer rate with histopathologic correlation. AJNR Am J Neuroradiol 15: 201–212PubMedGoogle Scholar
  11. 11.
    Kimura H, Meaney DF, McGowan JC et al (1996) Magnetization transfer imaging of diffuse axonal injury following experimental brain injury in the pig: characterization by magnetization transfer ratio with histopathologic correlation. J Comput Assist Tomogr 20: 540–546PubMedCrossRefGoogle Scholar
  12. 12.
    Dousset V, Armand JP, Lacoste D et al (1997) Magnetization transfer study of HIV encephalitis and progressive multifocal leukoencephalopathy. AJNR Am J Neuroradiol 18: 859–901Google Scholar
  13. 13.
    Kasner SE, Galetta SL, McGowan JC, Grossman RI (1997) Magnetization transfer imaging in progressive multifocal leukoencephalopathy. Neurology 48: 534–536PubMedGoogle Scholar
  14. 14.
    Silver NC, Barker GJ, MacManus DG et al (1996) Decreased magnetization transfer ratio due to demyelination: a case of central pontine myelinolysis. J Neurol Neurosurg Psychiatry 61: 208–209PubMedCrossRefGoogle Scholar
  15. 15.
    Thorpe JW, Barker GJ, Jones SJ et al (1995) Magnetisation transfer ratios and transverse magnetisation decay curves in optic neuritis: correlation with clinical findings and electrophysiology. J Neurol Neurosurg Psychiatry 59: 487–492PubMedCrossRefGoogle Scholar
  16. 16.
    Brochet B, Dousset V (1999) Pathological correlates of magnetization transfer imaging abnormalities in animal models and humans with multiple sclerosis. Neurology 53 (Suppl 3): S12 - S17PubMedGoogle Scholar
  17. 17.
    Deloire-Grassin MSA, Brochet B, Quesson B et al (2000) In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci 178: 10–16PubMedCrossRefGoogle Scholar
  18. 18.
    Kimura H, Grossman RI, Lenkinski RE, Gonzalez Scarano F (1996) Proton MR spectroscopy and magnetization transfer ratio in multiple sclerosis: correlative findings of active versus irreversible plaque disease. AJNR Am J Neuroradiol 17: 1539–1547PubMedGoogle Scholar
  19. 19.
    Moffett JR, Namboodiri MAA, Cangro CB, Neale JH (1991) Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 2: 131–134PubMedCrossRefGoogle Scholar
  20. 20.
    Loevner LA, Grossman RI, McGowan JC et al (1995) Characterization of multiple sclerosis plaques with T1-weighted MR and quantitative magnetization transfer. AJNR Am J Neuroradiol 16: 1473–1479PubMedGoogle Scholar
  21. 21.
    Cercignani M, Iannucci G, Rocca MA et al (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54: 1139–1144PubMedGoogle Scholar
  22. 22.
    Inglese M, Rovaris M, Bianchi S et al (2001) Magnetic resonance imaging, magnetisation transfer imaging and diffusion weighted imaging correlates of optic nerve, brain and cervical cord damage in Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 70: 444–449PubMedCrossRefGoogle Scholar
  23. 23.
    van Waesberghe JHTM, Kamphorst W, De Groot C et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46: 747–754PubMedCrossRefGoogle Scholar
  24. 24.
    McGowan JC, McCormack TM, Grossman RI et al (1999) Diffuse axonal pathology detected with magnetization transfer imaging following brain injury in the pig. Magn Reson Med 41: 727–733PubMedCrossRefGoogle Scholar
  25. 25.
    Bagley LJ, Grossman RI, Galetta SL et al (1999) Characterization of white matter lesions in multiple sclerosis and traumatic brain injury as revealed by magnetization transfer contour plots. AJNR Am J Neuroradiol 20: 977–981PubMedGoogle Scholar
  26. 26.
    van Buchem MA, McGowan JC, Kolson DL et al (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 36: 632–636PubMedCrossRefGoogle Scholar
  27. 27.
    Sormani MP, Iannucci G, Rocca MA et al (2000) Reproducibility of MTR histogram-derived measures of the brain on healthy volunteers. AJNR Am J Neuroradiol 21: 133136Google Scholar
  28. 28.
    Inglese M, Horsfield MA, Filippi M (2001) Scan-rescan variation of brain MTR histogram-derived measures from healthy volunteers using a semi-interleaved MT sequence. AJNR Am J Neuroradiol 22: 681–684PubMedGoogle Scholar
  29. 29.
    Kermode AG, Tofts P, Thompson A et al (1990) Heterogeneity of blood-brain barrier changes in multiple sclerosis: an MRI study with gadolinium-DTPA enhancement. Neurology 40: 229–235PubMedGoogle Scholar
  30. 30.
    Katz D, Taubenberger JK, Cannella B et al (1993) Correlation between magnetic resonance imaging findings and lesion development in multiple sclerosis. Ann Neurol 34: 661–669PubMedCrossRefGoogle Scholar
  31. 31.
    Filippi M, Rovaris M, Capra R et al (1998) A multi-center longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis: implications for phase II clinical trials. Brain 121: 2011–2020PubMedCrossRefGoogle Scholar
  32. 32.
    Silver NC, Lai M, Symms MR et al (1998) Serial magnetization transfer imaging to characterize the early evolution of new MS lesions. Neurology 51: 758–764PubMedGoogle Scholar
  33. 33.
    Campi A, Filippi M, Comi G et al (1996) Magnetization transfer ratios of contrast-enhancing and non-enhancing lesions in multiple sclerosis. Neuroradiology 38: 115–119PubMedCrossRefGoogle Scholar
  34. 34.
    Hiehle JF, Grossman RI, Ramer KN et al (1995) Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and non-enhanced T1-weighted images. AJNR Am J Neuroradiol 16: 69–77PubMedGoogle Scholar
  35. 35.
    Petrella JR, Grossman RI, McGowan JC et al (1996) Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization transfer effect. AJNR Am J Neuroradiol 17: 1041–1049PubMedGoogle Scholar
  36. 36.
    van Waesberghe JHTM, van Walderveen MAA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with Tl-weighted spin-echo and magnetization MR. AJNR Am J Neuroradiol 19: 675–683PubMedGoogle Scholar
  37. 37.
    Filippi M, Rocca MA, Comi G (1998) Magnetization transfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159: 162–165PubMedCrossRefGoogle Scholar
  38. 38.
    Filippi M, Rocca MA, Rizzo G et al (1998) Magnetization transfer ratios in MS lesions enhancing after different doses of gadolinium. Neurology 50: 1289–1293PubMedGoogle Scholar
  39. 39.
    Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814PubMedCrossRefGoogle Scholar
  40. 40.
    Goodkin DE, Rooney WD, Sloan R et al (1998) A serial study of new MS lesions and the white matter from which they arise. Neurology 51: 1689–1697PubMedGoogle Scholar
  41. 41.
    Lai HM, Davie CA, Gass A et al (1997) Serial magnetization transfer ratios in gadolinium-enhancing lesions in multiple sclerosis. J Neurol 244: 308–311PubMedCrossRefGoogle Scholar
  42. 42.
    Filippi M, Comi G (1997) Magnetization transfer ratio changes in a symptomatic lesion of a patient at presentation with possible multiple sclerosis. J Neurol Sci 151: 79–81PubMedCrossRefGoogle Scholar
  43. 43.
    Dousset V, Gayou A, Brochet B, Caillé JM (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51: 1150–1155PubMedGoogle Scholar
  44. 44.
    Rocca MA, Mastronardo G, Rodegher M et al (1999) Long term changes of MT-derived measures from patients with relapsing-remitting and secondary-progressive multiple sclerosis. AJNR Am J Neuroradiol 20: 821–827PubMedGoogle Scholar
  45. 45.
    Filippi M, Rocca MA, Sormani MP et al (1999) Short-term evolution of individual enhancing lesions studied with magnetization transfer imaging. Magn Reson Imaging 17: 979–984PubMedCrossRefGoogle Scholar
  46. 46.
    Kappos L, Moeri D, Radue EW et al (1999) Predictive value of gadolinium-enhanced MRI for relapse and changes in disability/impairment in multiple sclerosis: a met-analysis. Lancet 353: 964–969PubMedCrossRefGoogle Scholar
  47. 47.
    Filippi M, Campi A, Dousset V et al (1995) A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 45: 478–482PubMedGoogle Scholar
  48. 48.
    Loevner LA, Grossman RI, Cohen JA et al (1995) Microscopic disease in normal-appearing white matter on conventional MR imaging in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 96: 511–515Google Scholar
  49. 49.
    Gass A, Barker GJ, Kidd D et al (1994) Correlation of magnetization transfer ratio with disability in multiple sclerosis. Ann Neurol 36: 62–67PubMedCrossRefGoogle Scholar
  50. 50.
    Guo AC, Jewells VL, Provenzale JM (2001) Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging. AJNR Am J Neuroradiol 22: 1893–1900PubMedGoogle Scholar
  51. 51.
    Wong KT, Grossman RI, Boorstein JM et al (1995) Magnetization transfer imaging of perivascular hyperintense white matter in the elderly. AJNR Am J Neuroradiol 16: 253258Google Scholar
  52. 52.
    Rovaris M, Viti B, Ciboddo C et al (2000) Brain involvement in systemic immune-mediated diseases: a magnetic resonance and magnetization transfer imaging study. J Neurol Neurosurg Psychiatry 68: 170–177PubMedCrossRefGoogle Scholar
  53. 53.
    Gupta RK, Kathuria KM, Pradhan S (1999) Magnetization transfer MR imaging in CNS tuberculosis. AJNR Am J Neuroradiol 20: 867–875PubMedGoogle Scholar
  54. 54.
    Rocca MA, Colombo B, Pratesi A et al (2000) A magnetization transfer imaging study of the brain in patients with migraine. Neurology 54: 507–509PubMedGoogle Scholar
  55. 55.
    Tanabe JL, Ezekiel F, Jagust WJ et al (1999) Magnetization transfer ratio of white matter hyperintensities in subcortical ischemic vascular dementia. AJNR Am J Neuroradiol 20: 839–844PubMedGoogle Scholar
  56. 56.
    Kato Y, Matsumura K, Kinosada Y et al (1997) Detection of pyramidal tract lesions in amyotrophic lateral sclerosis with magnetization-transfer measurements. AJNR Am J Neuroradiol 18: 1541–1547PubMedGoogle Scholar
  57. 57.
    Iannucci G, Dichgans M, Rovaris M et al (2001) Correlations between clinical findings and magnetization transfer imaging metrics of tissue damage in individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 32: 643–648PubMedCrossRefGoogle Scholar
  58. 58.
    Inglese M, Salvi F, Iannucci G et al (2002) Magnetization transfer and diffusion tensor MR imaging of acute disseminated encephalomyelitis, AJNR Am J Neuroradiol 23: 267272Google Scholar
  59. 59.
    van Waesberghe JHTM, Castelijns JA, Scheltens P et al (1997) Comparison of four potential MR parameters for severe tissue destruction in multiple sclerosis lesions. Magn Reson Imaging 15: 155–162PubMedCrossRefGoogle Scholar
  60. 60.
    Rovaris M, Bozzali M, Rodegher M et al (1999) Brain MRI correlates of magnetization transfer imaging metrics in patients with multiple sclerosis. J Neurol Sci 166: 58–63PubMedCrossRefGoogle Scholar
  61. 61.
    Iannucci G, Rovaris M, Giacomotti L et al (2001) Correlations between measures of multiple sclerosis pathology derived from T2, Ti, magnetization transfer and diffusion tensor MR imaging. AJNR Am J Neuroradiol 22: 1462–1467Google Scholar
  62. 62.
    Pike GB, De Stefano N, Narayanan S et al (1999) Combined magnetization transfer and proton spectroscopic imaging in the assessment of pathologic brain lesions in multiple sclerosis. AJNR Am J Neuroradiol 20: 829–837PubMedGoogle Scholar
  63. 63.
    Filippi M, Tortorella C, Rovaris M et al (2000) Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 68: 157–161PubMedCrossRefGoogle Scholar
  64. 64.
    Rovaris M, Bozzali M, Santuccio G et al (2001) In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 124: 2540–2549PubMedCrossRefGoogle Scholar
  65. 65.
    Filippi M, Inglese M, Rovaris M et al (2000) Magnetization transfer imaging to monitor the evolution of MS: a one-year follow up study. Neurology 55: 940–946PubMedGoogle Scholar
  66. 66.
    Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and MTI findings at presentation in patients with clinically isolated syndromes suggestive of MS. AJNR Am J Neuroradiol 21: 1034–1038PubMedGoogle Scholar
  67. 67.
    Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52: 588–594PubMedGoogle Scholar
  68. 68.
    Codella M, Rocca MA, Colombo B et al (2002) A preliminary study of magnetization transfer and diffusion tensor MRI of MS patients with fatigue. J Neurol 249: 535–537PubMedCrossRefGoogle Scholar
  69. 69.
    Rocca MA, Falini A, Colombo B et al (2002) Adaptive functional changes in the cerebral cortex of patients with non-disabling MS correlate with the extent of brain structural damage. Ann Neurol 51: 330–339PubMedCrossRefGoogle Scholar
  70. 70.
    Lee M, Reddy H, Johansen-Berg H et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47: 606–613PubMedCrossRefGoogle Scholar
  71. 71.
    Reddy H, Narayanan S, Arnoutelis R et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123: 2314–2320PubMedCrossRefGoogle Scholar
  72. 72.
    Filippi M, Rocca MA, Falini A et al (2002) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neurolmage 15: 537–546CrossRefGoogle Scholar
  73. 73.
    Adams CWM (1997) Pathology of multiple sclerosis: progression of the lesion. Br Med Bull 33: 15–20Google Scholar
  74. 74.
    Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41: 81–89PubMedCrossRefGoogle Scholar
  75. 75.
    Arstila AU, Riekkinen P, Rinne UK, Laitinen L (1973) Studies on the pathogenesis of multiple sclerosis. Participation of lysosomes on demyelination in the central nervous system white matter outside plaques. Eur Neurol 9: 1–20Google Scholar
  76. 76.
    Bjartmar C, Kinkel RP, Kidd G et al (2001) Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57: 1248–1252PubMedGoogle Scholar
  77. 77.
    Evangelou N, Esiri MM, Smith S et al (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47: 391–395PubMedCrossRefGoogle Scholar
  78. 78.
    Pike GB, De Stefano N, Narayanan S et al (2000). Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 215: 824–830PubMedGoogle Scholar
  79. 79.
    Filippi M, Rocca MA, Minicucci L et al (1999) Magnetization transfer imaging of patients with definite MS and negative conventional MRI. Neurology 52: 845–848PubMedGoogle Scholar
  80. 80.
    Santos AC, Narayanan S, De Stefano N et al (2002) Magnetization transfer can predict clinical evolution in patients with multiple sclerosis. J Neurol 249: 662–668PubMedCrossRefGoogle Scholar
  81. 81.
    Tortorella C, Viti B, Bozzali M et al (2000) A magnetization transfer histogram study of normal appearing brain tissue in multiple sclerosis. Neurology 54: 186–193PubMedGoogle Scholar
  82. 82.
    Brex PA, Leary SM, Plant GT et al (2001) Magnetization transfer imaging in patients with clinically isolated syndromes suggestive of multiple sclerosis. AJNR Am J Neuroradiol 22: 947–951PubMedGoogle Scholar
  83. 83.
    Kaiser JS, Grossman RI, Polansky M et al (2000) Magnetization transfer histogram analysis of monosymptomatic episodes of neurologic dysfunction: preliminary findings. AJNR Am J Neuroradiol 21: 1043–1047PubMedGoogle Scholar
  84. 84.
    Siger-Zajdel M, Filippi M, Selmaj K (2002) MTR discloses subtle changes in the normal-appearing tissue from relatives of patients with MS. Neurology 58: 317–320PubMedGoogle Scholar
  85. 85.
    Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetisation transfer ratio and mean diffusivity of normal-appearing white and gray matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70: 311–317PubMedCrossRefGoogle Scholar
  86. 86.
    Filippi M, Rocca MA, Moiola L et al (1999) MRI and MTI changes in the brain and cervical cord from patients with Devic’s neuromyelitis optica. Neurology 53: 1705–1710PubMedGoogle Scholar
  87. 87.
    Ge Y, Grossman RI, Udupa JK et al (2002) Magnetization transfer ratio histogram analysis of normal-appearing gray matter and normal-appearing white matter in multiple sclerosis. J Comput Assist Tomogr 26: 62–68PubMedCrossRefGoogle Scholar
  88. 88.
    Kidd D, Barkhof F, McConnel R et al (1999) Cortical lesions in multiple sclerosis. Brain 122: 17–26PubMedCrossRefGoogle Scholar
  89. 89.
    Peterson JW, Bo L, Mork S et al (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50: 389–400PubMedCrossRefGoogle Scholar
  90. 90.
    Ge Y, Grossman RI, Udupa JK et al (2001) Magnetization transfer ratio histogram analysis of gray matter in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 22: 470–475PubMedGoogle Scholar
  91. 91.
    Rovaris M, Filippi M, Minicucci L et al (2000) Cortical/subcortical disease burden and cognitive impairment in multiple sclerosis. AJNR Am J Neuroradiol 21: 402–408PubMedGoogle Scholar
  92. 92.
    Filippi M, Bozzali M, Comi G (2001) Magnetization transfer and diffusion tensor MR imaging of basal ganglia from patients with multiple sclerosis. J Neurol Sci 183: 69–72PubMedCrossRefGoogle Scholar
  93. 93.
    Codella M, Rocca MA, Colombo B et al (2002) Cerebral gray matter pathology and fatigue in patients with multiple sclerosis: a preliminary study. J Neurol Sci 194: 71–74PubMedCrossRefGoogle Scholar
  94. 94.
    Rudick RA, Fisher E, Lee JC et al (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Neurology 53: 1698–1704PubMedGoogle Scholar
  95. 95.
    Filippi M, Rovaris M, Iannucci G et al (2000) Whole brain volume changes in progressive MS patients treated with cladribine. Neurology 55: 1714–1718PubMedGoogle Scholar
  96. 96.
    Dehmeshki J, Ruto AC, Arridge S et al (2001) Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 46: 600–609PubMedCrossRefGoogle Scholar
  97. 97.
    Kalkers NF, Hintzen RQ, van Waesberghe JH et al (2001) Magnetization transfer histogram parameters reflect all dimensions of MS pathology, including atrophy. J Neurol Sci 184: 155–162PubMedCrossRefGoogle Scholar
  98. 98.
    Rovaris M, Holtmannspötter M, Rocca MA et al (2002) The contribution of cervical cord MRI and brain magnetization transfer imaging to the assessment of individual patients with multiple sclerosis: a preliminary study. Mult Scler 8: 52–58PubMedGoogle Scholar
  99. 99.
    van Buchem MA, Grossman RI, Armstrong C et al (1998) Correlation of volumetric magnetization transfer imaging with clinical data in MS. Neurology 50: 1609–1617PubMedGoogle Scholar
  100. 100.
    Iannucci G, Minicucci L, Rodegher ME et al (1999) Correlations between clinical and MRI involvement in multiple sclerosis: assessment using Ti, T2 and MT histograms J Neurol Sci 171: 121–129CrossRefGoogle Scholar
  101. 101.
    Dehmeshki J, Barker GJ, Tofts PS (2002) Classification of disease subgroup and correlation with disease severity using magnetic resonance imaging whole-brain histograms: application to magnetization transfer ratios and multiple sclerosis. IEEE Trans Med Imaging 21: 320–331PubMedCrossRefGoogle Scholar
  102. 102.
    Rovaris M, Filippi M, Falautano M et al (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50: 1601–1608PubMedGoogle Scholar
  103. 103.
    Comi G, Rovaris M, Falautano M et al (1999) A multiparametric MRI study of frontal lobe dementia in multiple sclerosis. J Neurol Sci 171: 135–144PubMedCrossRefGoogle Scholar
  104. 104.
    Phillips MD, Grossman RI, Miki Y et al (1998) Comparison of T2 lesion volume and magnetization transfer ratio histogram analysis and of atrophy and measures of lesion burden in patients with multiple sclerosis. AJNR Am J Neuroradiol 19: 10551060Google Scholar
  105. 105.
    Bozzali M, Rocca MA, Iannucci G et al (1999) Magnetization transfer histogram analysis of the cervical cord in patients wth multiple sclerosis. AJNR Am J Neuroradiol 20: 1803–1808PubMedGoogle Scholar
  106. 106.
    Boorstein JM, Moonis G, Boorstein SM et al (1997) Optic neuritis: imaging with magnetization transfer. AJNR Am J Neuroradiol 169: 1709–1712Google Scholar
  107. 107.
    Silver NC, Barker CJ, Losseff NA et al (1997) Magnetization transfer ratio measurements in the cervical spinal cord: a preliminary study in multiple sclerosis. Neuroradiology 39: 441–445PubMedCrossRefGoogle Scholar
  108. 108.
    Lycklama à Nijeholt GJ, Castelijns JA, Lazeron RH et al (2000) Magnetization transfer ratio of the spinal cord in multiple sclerosis: relationship to atrophy and neurologic disability. J Neuroimaging 10: 67–72Google Scholar
  109. 109.
    Filippi M, Bozzali M, Horsfield MA et al (2000) A conventional and magnetization transfer MRI study of the cervical cord in patients with multiple sclerosis. Neurology 54: 207–213PubMedGoogle Scholar
  110. 110.
    Rovaris M, Bozzali M, Santuccio G et al (2000) Relative contributions of brain and cervical cord pathology to MS disability: a study with MTR histogram analysis. J Neurol Neurosurg Psychiatry 69: 723–727PubMedCrossRefGoogle Scholar
  111. 111.
    Rocca MA, Filippi M, Herzog J et al (2001) A magnetic resonance imaging study of the cervical cord of patients with CADASIL. Neurology 56: 1392–1394PubMedGoogle Scholar
  112. 112.
    Inglese M, Ghezzi A, Bianchi S et al (2002) MS irreversible disability and tissue loss: a conventional and MT MRI study of the optic nerves. Arch Neurol 59: 250–255PubMedCrossRefGoogle Scholar
  113. 113.
    Filippi M, Dousset V, McFarland HF et al (2002) The role of MRI in the diagnosis and monitoring of multiple sclerosis. Consensus report of the “White Matter Study Group” of the International Society for Magnetic Resonance in Medicine. J Magn Reson Imaging 15: 499–504Google Scholar
  114. 114.
    Richert ND, Ostuni JL, Bash CN et al (1998) Serial whole-brain magnetization transfer imaging in patients with relapsing-remitting multiple sclerosis at baseline and during treatment with interferon beta-lb. AJNR Am J Neuroradiol 19: 1705–1713PubMedGoogle Scholar
  115. 115.
    Richert ND, Ostuni JL, Bash CN et al (2001) Interferon beta-lb and intravenous methylprednisolone promote lesion recovery in multiple sclerosis. Mult Scler 7: 49–58PubMedGoogle Scholar
  116. 116.
    Kita M, Goodkin DE, Bacchetti P et al (2000) Magnetization transfer ratio in new MS lesions before and during therapy with IFNß-la. Neurology 54: 1741–1745PubMedGoogle Scholar
  117. 117.
    Filippi M, Inglese M, van Waesberghe JH et al (2002) The effect of interferon beta-lb on quantities derived from MT MRI in secondary progressive multiple sclerosis (abstract). J Neurol 249 (Suppl 1 ): I /168Google Scholar
  118. 118.
    Filippi M, Iannucci G, Sormani MP et al (2002) The effect of intravenous immunoglobulins on quantities derived from MT MRI in secondary progressive multiple sclerosis (abstract). J Neurol 249 (Suppl 1):I/115–116Google Scholar
  119. 119.
    Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46: 923–931PubMedCrossRefGoogle Scholar
  120. 120.
    Ropele S, Strasser-Fuchs S, Seifert T et al (2002) Development of active multiple sclerosis lesions: a quantitative MT study (abstract). Proc Intl Soc Magn Reson Med 10: 180Google Scholar
  121. 121.
    Sled JG, Levesque I, Narayanan S et al (2002) The role of edema and demyelination in Ti black holes: a quantitative magnetization transfer study (abstract). Proc Intl Soc Mag Reson Med 10: 181Google Scholar
  122. 122.
    Dehmeshki J, Silver NC, Leary S et al (2001). Magnetisation transfer ratio histogram analysis of primary progressive and other multiple sclerosis subgroups. J Neurol Sci 185: 11–17PubMedCrossRefGoogle Scholar
  123. 123.
    Dehmeshki J, Chard DT, Leary S et al (2002). Magnetisation transfer histograms in primary progressive multiple sclerosis: grey matter changes relate to disability and principal component analysis shows this most sensitively (abstract). Proc Intl Soc Mag Reson Med 10: 179Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 2003

Authors and Affiliations

  • M. Rovaris
  • M. Filippi

There are no affiliations available

Personalised recommendations