Skip to main content

Cell-Specific Imaging in Pathologic Conditions of the Central Nervous System, with Special Reference to Multiple Sclerosis

  • Chapter

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

As in other autoimmune diseases, the inflammatory process of multiple sclerosis (MS) implicates T cells, B cells, and macrophages, and the activation of local organ-specific phagocytic cells. Particular to MS is the infiltration of the lymphocytes into the central nervous system (CNS) by crossing the blood-brain barrier (BBB) and the activation of the intrinsic immunoeffector microglia cells and of astrocytes. Although the pathologic lesions involving the brain and the spinal cord in MS can be visualized in vivo using both routine and more specific magnetic resonance imaging (MRI) techniques [1], the cellular events of CNS inflammation are difficult to observe in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filippi M, Grossman RI (2002) MRI techniques to monitor MS evolution. The present and the future. Neurology 58: 1147–1153

    PubMed  Google Scholar 

  2. Schoepf U, Marecos EM, Melder RJ et al (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24: 642–651

    PubMed  CAS  Google Scholar 

  3. Weissleder R, Cheng HC, Bogdanova A, Bogdanova A Jr (1997) Magnetically labeled cells can be detected be MR imaging. J Magn Reson Imaging 7: 258–263

    Article  PubMed  CAS  Google Scholar 

  4. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19: 316–317

    Article  PubMed  CAS  Google Scholar 

  5. Weissleder R, Elizondo G, Wittenberg J et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175: 489–493

    PubMed  CAS  Google Scholar 

  6. Lee S, Weissleder R, Brady T, Wittenberg J (1991) Lymph nodes: microstructural anatomy at MR imaging. Radiology 178: 519–522

    PubMed  CAS  Google Scholar 

  7. Weissleder R, Heautot JF, Schaffer BK et al (1994) MR lymphography: study of a high-efficiency lymphotropic agent. Radiology 191: 225–230

    PubMed  CAS  Google Scholar 

  8. Harisinghani MG, Saini S, Weissleder R et al (1999) MR lymphography using ultra-small superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. AJR Am J Roentol 172: 1347–1351

    CAS  Google Scholar 

  9. Lassmann H, Brück W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7: 115–121

    Article  PubMed  CAS  Google Scholar 

  10. Dousset V, Delalande C, Ballarino L et al (1999) In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 41: 329–333

    Article  PubMed  CAS  Google Scholar 

  11. Dousset V, Ballarino L, Delalande C et al (1999) Comparison of ultrasmall particles of iron oxide (USPIO) T2-weighted, conventional T2-weighted and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 20: 223–227

    PubMed  CAS  Google Scholar 

  12. Dousset V, Gomez C, Petry KG et al (1999) Dose and scanning delay using USPIO for central nervous system macrophage imaging. MAGMA 8: 185–189

    Article  PubMed  CAS  Google Scholar 

  13. Dousset V, Brochet B, Caillé JM, Petry KG (2000) MS lesions enhancement with ultra small particle iron oxide: the first phase II study. Rev Neurol (Paris) 156 (Suppl 3): 40

    Google Scholar 

  14. Xu S, Jordan EK, Brocke S et al (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J Neurosci Res 52: 549–558

    Article  PubMed  CAS  Google Scholar 

  15. Doerfler A, Engelhorn T, Heiland S et al (2000) MR contrast agents in acute experimental cerebral ischemia: potential adverse impacts on neurologic outcome and infarction size. J Magn Reson Imaging 11: 418–424

    Article  PubMed  CAS  Google Scholar 

  16. Rausch M, Baumann D, Neubacher U, Rudin M (2002) In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR Biomed 15: 278–283

    Article  PubMed  CAS  Google Scholar 

  17. Rausch M, Sauter A, Frohlich J et al (2001) Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 46: 1018–1022

    Article  PubMed  CAS  Google Scholar 

  18. Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR imaging using long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9: 228–232

    Article  PubMed  CAS  Google Scholar 

  19. Varallyay P, Nesbit G, Muldoon LL et al (2002) Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 23: 510–519.

    PubMed  Google Scholar 

  20. Fleige G, Nolte C, Synowitz M et al (2001) Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 3: 489–499

    Article  PubMed  CAS  Google Scholar 

  21. Gage F, Christen Y (eds) (1997) Isolation, characterization and utilization of CNS stem cells. Springer, Berlin Heidelberg New York

    Google Scholar 

  22. Bjornons CRR, Rietze RL, Reynolds BA et al (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283: 534–537

    Article  Google Scholar 

  23. Eglitis M, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94: 4080–4085

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neurons in vitro. Exp Neurol 164: 247–256

    Article  PubMed  CAS  Google Scholar 

  25. Woodburry D, Schwartz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Rev 61: 364–370

    Article  Google Scholar 

  26. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96: 10711–10716

    Article  PubMed  CAS  Google Scholar 

  27. Mezey E, Chandross KJ, Harta G et al (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782

    Article  PubMed  CAS  Google Scholar 

  28. Bulte Jan, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: MR tracking of cell migration and myelination. Proc Natl Acad Sci USA 96: 15256–15261

    Article  PubMed  CAS  Google Scholar 

  29. Bulte JWM, Duncan ID, Frank JA (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22: 899–907

    Article  PubMed  Google Scholar 

  30. Doche de Laquitane B, Dousset V, Solanilla A et al (2002) Iron particle labelling of haemopoietic progenitor cells: an in vitro study. Biosci Rep.

    Google Scholar 

  31. Sipe JC, Filippi M, Martino G et al (1999) Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents. Magn Reson Imaging 17: 1521–1523

    Article  PubMed  CAS  Google Scholar 

  32. Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanopartides allows in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18: 410–414

    Article  PubMed  CAS  Google Scholar 

  33. Schoepf U, Marecos EM, Melder RI et al (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24: 642–651

    PubMed  CAS  Google Scholar 

  34. Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212: 609–614

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Dousset, V., Brochet, B., Caille, JM., Petry, K.G. (2003). Cell-Specific Imaging in Pathologic Conditions of the Central Nervous System, with Special Reference to Multiple Sclerosis. In: Filippi, M., Comi, G. (eds) New Frontiers of MR-based Techniques in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2237-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2237-9_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2239-3

  • Online ISBN: 978-88-470-2237-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics