Cell-Specific Imaging in Pathologic Conditions of the Central Nervous System, with Special Reference to Multiple Sclerosis

  • V. Dousset
  • B. Brochet
  • J.-M. Caille
  • K. G. Petry
Part of the Topics in Neuroscience book series (TOPNEURO)


As in other autoimmune diseases, the inflammatory process of multiple sclerosis (MS) implicates T cells, B cells, and macrophages, and the activation of local organ-specific phagocytic cells. Particular to MS is the infiltration of the lymphocytes into the central nervous system (CNS) by crossing the blood-brain barrier (BBB) and the activation of the intrinsic immunoeffector microglia cells and of astrocytes. Although the pathologic lesions involving the brain and the spinal cord in MS can be visualized in vivo using both routine and more specific magnetic resonance imaging (MRI) techniques [1], the cellular events of CNS inflammation are difficult to observe in vivo.


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Magn Reson Image Ultrasmall Superparamagnetic Iron Oxide Experimental Autoimmune Encephalomyelitis Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Filippi M, Grossman RI (2002) MRI techniques to monitor MS evolution. The present and the future. Neurology 58: 1147–1153PubMedGoogle Scholar
  2. 2.
    Schoepf U, Marecos EM, Melder RJ et al (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24: 642–651PubMedGoogle Scholar
  3. 3.
    Weissleder R, Cheng HC, Bogdanova A, Bogdanova A Jr (1997) Magnetically labeled cells can be detected be MR imaging. J Magn Reson Imaging 7: 258–263PubMedCrossRefGoogle Scholar
  4. 4.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19: 316–317PubMedCrossRefGoogle Scholar
  5. 5.
    Weissleder R, Elizondo G, Wittenberg J et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175: 489–493PubMedGoogle Scholar
  6. 6.
    Lee S, Weissleder R, Brady T, Wittenberg J (1991) Lymph nodes: microstructural anatomy at MR imaging. Radiology 178: 519–522PubMedGoogle Scholar
  7. 7.
    Weissleder R, Heautot JF, Schaffer BK et al (1994) MR lymphography: study of a high-efficiency lymphotropic agent. Radiology 191: 225–230PubMedGoogle Scholar
  8. 8.
    Harisinghani MG, Saini S, Weissleder R et al (1999) MR lymphography using ultra-small superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. AJR Am J Roentol 172: 1347–1351Google Scholar
  9. 9.
    Lassmann H, Brück W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7: 115–121PubMedCrossRefGoogle Scholar
  10. 10.
    Dousset V, Delalande C, Ballarino L et al (1999) In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 41: 329–333PubMedCrossRefGoogle Scholar
  11. 11.
    Dousset V, Ballarino L, Delalande C et al (1999) Comparison of ultrasmall particles of iron oxide (USPIO) T2-weighted, conventional T2-weighted and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 20: 223–227PubMedGoogle Scholar
  12. 12.
    Dousset V, Gomez C, Petry KG et al (1999) Dose and scanning delay using USPIO for central nervous system macrophage imaging. MAGMA 8: 185–189PubMedCrossRefGoogle Scholar
  13. 13.
    Dousset V, Brochet B, Caillé JM, Petry KG (2000) MS lesions enhancement with ultra small particle iron oxide: the first phase II study. Rev Neurol (Paris) 156 (Suppl 3): 40Google Scholar
  14. 14.
    Xu S, Jordan EK, Brocke S et al (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J Neurosci Res 52: 549–558PubMedCrossRefGoogle Scholar
  15. 15.
    Doerfler A, Engelhorn T, Heiland S et al (2000) MR contrast agents in acute experimental cerebral ischemia: potential adverse impacts on neurologic outcome and infarction size. J Magn Reson Imaging 11: 418–424PubMedCrossRefGoogle Scholar
  16. 16.
    Rausch M, Baumann D, Neubacher U, Rudin M (2002) In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR Biomed 15: 278–283PubMedCrossRefGoogle Scholar
  17. 17.
    Rausch M, Sauter A, Frohlich J et al (2001) Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 46: 1018–1022PubMedCrossRefGoogle Scholar
  18. 18.
    Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR imaging using long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9: 228–232PubMedCrossRefGoogle Scholar
  19. 19.
    Varallyay P, Nesbit G, Muldoon LL et al (2002) Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 23: 510–519.PubMedGoogle Scholar
  20. 20.
    Fleige G, Nolte C, Synowitz M et al (2001) Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 3: 489–499PubMedCrossRefGoogle Scholar
  21. 21.
    Gage F, Christen Y (eds) (1997) Isolation, characterization and utilization of CNS stem cells. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Bjornons CRR, Rietze RL, Reynolds BA et al (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283: 534–537CrossRefGoogle Scholar
  23. 23.
    Eglitis M, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94: 4080–4085PubMedCrossRefGoogle Scholar
  24. 24.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neurons in vitro. Exp Neurol 164: 247–256PubMedCrossRefGoogle Scholar
  25. 25.
    Woodburry D, Schwartz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Rev 61: 364–370CrossRefGoogle Scholar
  26. 26.
    Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96: 10711–10716PubMedCrossRefGoogle Scholar
  27. 27.
    Mezey E, Chandross KJ, Harta G et al (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782PubMedCrossRefGoogle Scholar
  28. 28.
    Bulte Jan, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: MR tracking of cell migration and myelination. Proc Natl Acad Sci USA 96: 15256–15261PubMedCrossRefGoogle Scholar
  29. 29.
    Bulte JWM, Duncan ID, Frank JA (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22: 899–907PubMedCrossRefGoogle Scholar
  30. 30.
    Doche de Laquitane B, Dousset V, Solanilla A et al (2002) Iron particle labelling of haemopoietic progenitor cells: an in vitro study. Biosci Rep.Google Scholar
  31. 31.
    Sipe JC, Filippi M, Martino G et al (1999) Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents. Magn Reson Imaging 17: 1521–1523PubMedCrossRefGoogle Scholar
  32. 32.
    Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanopartides allows in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18: 410–414PubMedCrossRefGoogle Scholar
  33. 33.
    Schoepf U, Marecos EM, Melder RI et al (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24: 642–651PubMedGoogle Scholar
  34. 34.
    Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212: 609–614PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2003

Authors and Affiliations

  • V. Dousset
  • B. Brochet
  • J.-M. Caille
  • K. G. Petry

There are no affiliations available

Personalised recommendations